Profilaggrin, an insoluble precursor of the intermediate filament-associated protein filaggrin, contains multiple internal repeats (PIRs). At terminal differentiation of epidermis, proteolytic processing within a "linker" region of each PIR releases soluble filaggrin in a two-stage process. The first stage endoproteinase (PEP1, profilaggrin endoproteinase 1) cleaves mouse profilaggrin at a subset of the linkers, yielding processing intermediates consisting of several filaggrin repeats. An epidermal endoproteinase that cleaves the requisite linker subset has been purified 4,966-fold from mouse epidermal extracts. SDS-polyacrylamide gel electrophoresis demonstrated a band of molecular mass of 29.5 kDa that correlated with the activity. Labeling with [3H]diisopropylfluorophosphate identified PEP1 as a serine protease; inhibitor studies suggest that it is similar to chymotrypsin, as expected from previous in vivo studies. The purified PEP1 cleaved a peptide derived from profilaggrin (P1) at three residues within and adjacent to a multiple tyrosine sequence, consistent with the in vivo processing sites. No exopeptidase activity was detected. PEP1 is only active toward insoluble profilaggrin, resulting in partial solubilization, consistent with a role in dispersal of profilaggrin during terminal differentiation. In contrast to the specific cleavage of mouse profilaggrin, PEP1 cleaved all linker regions of rat profilaggrin. Studies with phosphorylated P1 suggest that PEP1 specificity may be partly regulated by profilaggrin phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.47.28193DOI Listing

Publication Analysis

Top Keywords

profilaggrin
9
profilaggrin endoproteinase
8
terminal differentiation
8
endoproteinase cleaves
8
mouse profilaggrin
8
pep1 cleaved
8
pep1
6
endoproteinase
5
characterization profilaggrin
4
endoproteinase regulated
4

Similar Publications

This study aimed to evaluate the therapeutic efficacy of camellia oil on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice, as well as its effect on the expression of skin-barrier-related proteins. A mouse model of AD was created via topical application of DNCB; subsequently, the animals were randomly divided into four groups: the blank control (Control), model (Model), moisturizing cream (Moisturizer), and camellia oil (Camellia) groups. The Camellia group received camellia oil, whereas the Moisturizer group was treated with moisturizing cream, as a positive control.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Our objectives were to explore epidermal barrier defects in dogs with atopic dermatitis and to determine whether the defects are genetically determined or secondary to skin inflammation. First, the expression of filaggrin, corneodesmosin, and claudin1, analyzed using indirect immunofluorescence in skin biopsies collected from 32 healthy and 32 dogs with atopic dermatitis, was weaker in the atopic skin ( .003).

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by proteins involved in skin barrier maintenance and vitamin D metabolism. Using an intra-patient design, this study compared protein expression in intra-lesional (IL) and peri-lesional (PL) skin biopsies from AD patients and examined associations between protein levels, vitamin D status, and clinical features. Forty-four biopsies from twenty-two AD patients were analyzed using antibody microarrays targeting twelve proteins.

View Article and Find Full Text PDF

Aging Skin: A Dermatitis To Which All Flesh Is Heir?

J Cutan Pathol

January 2025

Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital/Mass General Brigham, Boston, Massachusetts, USA.

The human body is composed mostly of water fortified by a variety of proteins, fats, carbohydrates, vitamins, minerals, and other nutrients, all organized into an elegant structurally complex and functionally efficient machine in which our consciousness resides. This heterogeneous assemblage of essential ingredients is enclosed in a container known as the integument, or simply, the skin. The container is as important as its contents; when itself devoid of structural and functional integrity, it will both leak as well as become infused with potentially harmful external agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!