Nitric oxide synthase (NOS) catalyzes sequential NADPH- and O2-dependent mono-oxygenase reactions converting L-arginine to N omega-hydroxy-L-arginine and N omega-hydroxy-L-arginine to citrulline and nitric oxide. The homodimeric enzyme contains one heme/monomer, and that cofactor is thought to mediate both partial reactions. Here we show by electron paramagnetic resonance spectroscopy that binding of substrate L-arginine to neuronal NOS perturbs the heme cofactor binding pocket without directly interacting as a sixth axial heme ligand; heme iron is exclusively high spin. In contrast, binding of L-thiocitrulline, a NOS inhibitor, produces both high and low spin iron spectra; L-thiocitrulline sulfur is a sixth axial heme ligand in one, but not all, of the low spin forms. The high spin forms of the L-thiocitrulline NOS complex display a distortion in the opposite direction to that caused by L-arginine binding. The findings elucidate the binding interactions of L-arginine and L-thiocitrulline to neuronal NOS and demonstrate that each causes a unique perturbation to the heme cofactor pocket of NOS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.46.27423 | DOI Listing |
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFOncol Lett
March 2025
Pathology Department, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China.
The human cytochrome b561 (hCytb561) family consists of electron transfer transmembrane proteins characterized by six conserved α-helical transmembrane domains and two β-type heme cofactors. These proteins contribute to the regulation of iron metabolism and numerous different physiological and pathological processes by recycling ascorbic acid and maintaining iron reductase activity. Key members of this family include cytochrome b561 (CYB561), duodenal CYB561 (Dcytb), lysosomal CYB561 (LCytb), stromal cell-derived receptor 2 (SDR2) and 101F6, which are widely expressed in human tissues and participate in the pathogenesis of several diseases and tumors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.
View Article and Find Full Text PDFMetab Eng
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:
Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B.
View Article and Find Full Text PDFChembiochem
December 2024
Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia.
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyse the selective hydroxylation of unactivated C-H bonds in organic molecules. There is great interest in applying these enzymes as biocatalysts with a focus on self-sufficient CYP 'fusion' enzymes, comprising a single polypeptide chain with the electron transfer components joined to the heme domain. Here we elucidate the function of the self-sufficient CYP116B46 fusion enzyme, from the thermophilic bacterium Tepidiphilus thermophilus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!