The "Cooling Pond" scenario is designed to test models for radioactive contamination of aquatic ecosystems, based on data for contamination of different aquatic media and biota due to fallout of radionuclides into the cooling pond of the Chernobyl Nuclear Power Plant. Input data include characteristics of the cooling pond ecosystem (hydrological, hydrochemical, and hydrobiological conditions) and estimates of the amounts of 137Cs in the cooling pond. Predictions are requested in two stages: (1) calculations for 137Cs concentrations for comparison against actual measurements, including activities of 137Cs in the cooling pond water, in sediment layers, and in fish; and (2) calculations for which actual measurements are not available, including dose and risk estimates for aquatic biota and for humans following hypothetical consumption of contaminated biota. The latter calculations are intended to provide an opportunity for intercomparison among modelers of their results for a simulated assessment problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004032-199601000-00003 | DOI Listing |
Sci Rep
December 2024
Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
The Northern Antarctic Peninsula (NAP) and the West Antarctic Ice Sheet (WAIS) are likely to respond rapidly to climate changes by increasing the collapse of peripheral ice shelves and the number of days above 0 °C. These facts make this region a representative hotspot of the global sea level rise and the location of one of the global climate tipping points (thresholds in the Earth system whose changes may become irreversible, if exceeded). Understanding the climate evolution of the NAP, based on past evidences, may help infer its future scenario.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Mechanical Engineering, College of Engineering and Technology, University of Doha for Science and Technology, Arab League St, 24449, Doha, Qatar.
This research focuses on utilizing injection moulding to assess defects in plastic products, including sink marks, shrinkage, and warpages. Process parameters, such as pure cooling time, mould temperature, melt temperature, and pressure holding time, are carefully selected for investigation. A full factorial design of experiments is employed to identify optimal settings.
View Article and Find Full Text PDFFront Vet Sci
September 2024
Department of Livestock and Pasture Science, University of Fort Hare, Alice, South Africa.
Sci Total Environ
October 2024
Duke University Wetland and Coasts Center, Nicholas School of the Environment, United States of America. Electronic address:
In response to climate-driven water shortages, Duke University in 2014 constructed a water reuse reservoir and wetland complex (Pond) to capture urban stormwater and recycle water to provide campus cooling and reduce downstream loading of nutrients and sediment into Jordan Lake, a regional water supply. We postulated that even with significant water level changes due to withdrawals, the Pond would function to reduce downstream nutrients and sediment once wetland plants became established in the littoral zone. Throughout the project (2015-2021), baseflow nutrient concentrations downstream decreased, with Unfiltered Total Nitrogen (UTN) falling by 44 % and Unfiltered Total Phosphorus (UTP) by 50 %.
View Article and Find Full Text PDFPLoS One
July 2024
College of Mechanical and Power Engineering, Dalian Ocean University, Dalian, Liaoning, China.
The selection of water temperature regulation equipment plays a crucial role in the design of workshops. At present, the choice of water temperature control equipment is usually based on the volume of the fish pond and thermal parameter calculation, combined with aquaculture experience. Empirical formulas only work in specific conditions due to factors like the environment, climate, and fish types,resulting in inaccurate equipment selection outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!