Considerable interest has focused on the role of glutamate-mediated excitotoxicity in neurodegenerative disorders of the basal ganglia. The in vitro data on the receptor mechanisms involved in this process, however, have been inconclusive. Some studies have indicated that excitotoxins acting at NMDA receptors kill striatal neurons and others have indicated that NMDA receptor-mediated excitotoxic death of striatal neurons is minimal in the absence of cortex. In the present study, we used a pharmacological approach to carefully reexamine this issue in 2-week-old cultures of striatal neurons dissociated from E17 rat embryos. The sensitivity of these neurons to glutamate agonists and antagonists was determined by monitoring cell loss in identified regions of the growth dishes. We found that glutamate killed striatal neurons with an EC50 of 100 microM. This loss was not mediated by NMDA receptors, since it was not reduced by the NMDA receptor antagonist APV (0.1-1.0 mM). Consistent with this result, up to 50 mM NMDA receptor-specific excitotoxin quinolinic acid (QA) did not affect neuronal survival. Depolarizing the QA-exposed neurons with 35 mM potassium chloride to enhance NMDA receptor activation by QA also did not produce neuron loss. The metabotropic glutamate receptor antagonist AP3 (500 microM) also had no effect on the striatal neuron loss produced by 100 microM glutamate. In contrast, the non-NMDA antagonist GYKI 52466 (100 microM) did block the excitotoxic effect of glutamate (100 microM). Specific AMPA and KA receptor agonists and the non-NMDA antagonist GYKI 52466 revealed that the non-NMDA receptor-mediated excitotoxic effect of glutamate was mediated by KA receptors. These results suggest that cultured striatal neurons are directly vulnerable to non-NMDA glutamate agonists, but not to NMDA and metabotropic glutamate agonists. Thus, non-NMDA receptors may play a greater role in the excitotoxic death of striatal neurons in disease and experimental animal models than previously realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.1995.1098 | DOI Listing |
Cells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFJ Cent Nerv Syst Dis
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.
View Article and Find Full Text PDFMol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFEur J Neurosci
January 2025
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.
View Article and Find Full Text PDFBMC Med
January 2025
Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.
Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!