The purT gene from Bacillus subtilis encoding the formate-dependent glycinamide ribonucleotide transformylase T was cloned by functional complementation of an Escherichia coli purN purT double mutant. The nucleotide sequence revealed an open reading frame of 384 amino acids. The purT amino acid sequence showed similarity to the enzyme phosphoribosylaminoimidazole carboxylase encoded by the purK gene but not to the N10-formyltetrahydrofolate-dependent glycinamide ribonucleotide transformylase N enzyme encoded by the purN gene. The glycinamide ribonucleotide transformylase T level was repressed in cells grown in rich medium compared to minimal-medium-grown cells. However, when the culture entered the stationary-growth phase the enzyme level increased in rich medium and decreased in minimal medium. By comparing the deduced amino acid sequence of the B. subtilis purT gene product with translated nucleotide sequences in various databanks, evidence for the existence of putative purT genes in the Gram-negative bacteria Pasteurella haemolytica and Pseudomonas aeruginosa was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1099/13500872-141-9-2211DOI Listing

Publication Analysis

Top Keywords

glycinamide ribonucleotide
16
ribonucleotide transformylase
16
purt gene
12
bacillus subtilis
8
subtilis purt
8
encoding formate-dependent
8
formate-dependent glycinamide
8
amino acid
8
acid sequence
8
rich medium
8

Similar Publications

Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. We assessed the mass spectral quality using two DIA techniques, namely, all-ion fragmentation (AIF) and variable DIA (vDIA), to isolate 60-800 Da precursor ions with respect to annotation rates.

View Article and Find Full Text PDF

Dual Template Molecularly Imprinted Polymers Targeting Blockade of CD47 for Enhanced Macrophage Phagocytosis and Synergistic Antimetabolic Therapy.

ACS Appl Mater Interfaces

August 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.

Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy.

View Article and Find Full Text PDF

Competing Endogenous RNAs Crosstalk in Hippocampus: A Potential Mechanism for Neuronal Developing Defects in Down Syndrome.

J Mol Neurosci

March 2024

National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China.

Down syndrome (DS) is the most example of aneuploidy, resulting from an additional copy of all or part of chromosome 21. Competing endogenous RNAs (ceRNAs) play important roles in neuronal development and neurological defects. This study aimed to identify hub genes and synergistic crosstalk among ceRNAs in the DS fetal hippocampus as potential targets for the treatment of DS-related neurodegenerative diseases.

View Article and Find Full Text PDF

One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells.

View Article and Find Full Text PDF

Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria.

J Med Chem

August 2023

Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.

Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-]pyrimidine antifolate with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!