The human syndrome of resistance to thyroid hormone (RTH) is associated with dominant mutations in the thyroid hormone receptor beta (TR beta) gene that generate mutant receptors with impaired binding for T3. Although the TR beta gene differentially expresses two N-terminal variant receptors, TR beta 1 and TR beta 2, functional analyses of RTH mutants have focused exclusively on TR beta 1. Since TR beta 2 is expressed in tissues that are malfunctional in RTH, the role of mutations in the context of TR beta 2 was examined. We compared the functional properties of corresponding RTH mutations in the common C-terminal domain of both TR beta 1 and TR beta 2. Wild type TR beta 1 and TR beta 2 bound similarly as homodimers and as heterodimers with retinoid X receptors to T3-responsive elements consisting of a direct repeat with 4-base pair spacing or an everted repeat. Homodimers, but not monomers or heterodimers, of both receptor subtypes were dissociated by the addition of T3. However, TR beta 2 formed at least 10-fold more stable homodimers than TR beta 1 on a palindromic repeat element, indicating that the N termini of TR beta 1 and TR beta 2 differentially influence dimerization on DNA. The RTH-like mutants of both TR beta 1 and TR beta 2 were equally insensitive to T3. They were defective in T3 binding but still bound DNA like their wild type counterparts except that the T3-dependent dissociation of homodimers from DNA was severely reduced. Wild type TR beta 1 and TR beta 2 mediated T3-inducible transactivation in cotransfection assays; this, however, was abolished in both mutants. TR beta 1 mediated more sensitive T3-dependent transcriptional suppression than TR beta 2 through the negative T3 response region of the TSH beta gene. Again, the mutation abolished T3-dependent suppression by both mutants. Furthermore, both mutants inhibited T3-inducible transcriptional activation by different wild type TR alpha and beta variants. These results indicate that both mutants have the potential to contribute to the pathogenesis of RTH and suggest that a reassessment of previous models of RTH is required to take into account the inhibitory activity of both TR beta 2 and TR beta 1 mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.9.9.7491112 | DOI Listing |
J Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.
Purpose: This study investigated elite German athletes to (1) assess their serum 25(OH)D levels and the prevalence of insufficiency, (2) identify key factors influencing serum 25(OH)D levels, and (3) analyze the association between serum 25(OH)D levels and handgrip strength.
Methods: In this cross-sectional study, a total of 474 athletes (231 female), aged 13-39 years (mean 19.3 years), from ten Olympic disciplines were included.
Sci Rep
January 2025
Department of Neurology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
Benign paroxysmal vertigo (BPV) is a common cause of dizziness, and some patients are comorbid with psychiatric disorders such as depression, requiring intervention with antidepressants. However, the causal association between BPV, depression and antidepressants has not been clearly established. We used two-sample bidirectional Mendelian randomization (MR) to analyze the causal association between BPV, depression, and antidepressants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!