Presently available noninvasive methods correctly localize epileptogenic regions in only approximately 50% of patients with frontal lobe epilepsy (FLE). Earlier studies have shown that temporal lobe epileptogenic regions may be identified readily by positron emission tomography (PET) measurements of regional benzodiazepine (BZD) receptor binding. We tested the specific applicability of this method in patients with FLE. Six patients with frontal partial seizures and 7 healthy men were investigated with PET and the BZD receptor ligand [11C]flumazenil. All patients had magnetic resonance (MR) brain scans. The independent assessment of seizure-onset region was based on seizure semiology, intra- and extracranial EEG and, in 4 cases, also on [18F]fluorodeoxyglucose (FDG)-PET. The epileptic focus/seizure-generating region was correctly identified by [11C]flumazenil PET in all patients. This region was characterized by a significant reduction in BZD receptor density. The area with reduced BZD receptor density was better delimited than the corresponding hypometabolic region, which was observed in 50% of patients investigated with [18F]FDG-PET. MRI was normal in 5 patients. Visualization of BZD receptors with [11C]flumazenil PET appears to be a promising approach for noninvasive identification of frontal lobe epileptogenic regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1157.1995.tb01066.x | DOI Listing |
J Neural Eng
January 2025
Hangzhou Dianzi University, School of Automation, Hangzhou Dianzi University, Hangzhou 310052, China, Hangzhou, Zhejiang, 310018, CHINA.
The identification of spikes, as a typical characteristic wave of epilepsy, is crucial for diagnosing and locating the epileptogenic region. The traditional seizure detection methods lack spike features and have low sample richness. This paper proposes a seizure detection method with spike-based phase locking value (PLV) functional brain networks and multi-domain fused features.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Neuroscience Service, High Complexity El Cruce, "Nestor Kirchner" Hospital, ENYS. UNAJ. CONICET, Florencio Varela, Provincia de Buenos Aires, Argentina.
Objectives: The aim of this study is to describe a population of patients with drug resistant epilepsy who underwent stereoelectroencephalography (SEEG) for epilepsy presurgical evaluation in a high complexity public hospital in Argentina.
Methods: We included patients from 2014 to 2023. We conducted a retrospective study of patients with drug-resistant epilepsy admitted to the Video-EEG unit.
Cureus
December 2024
Department of Clinical and Forensic Neuroscience, University of Veracruz, Boca del Río, MEX.
Temporal lobe epilepsy (TLE) represents a prevalent form of focal epilepsy that often requires surgical intervention and can be resistant to antiseizure medications. Its epidemiology varies across regions due to diagnostic challenges and underestimation of individual neurological traits. Despite these complexities, TLE accounts for a significant proportion of total epilepsies worldwide.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery.
Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!