Far-red-emitting cyanine fluorochromes have many properties desirable for in vivo imaging: absorption and emission at wavelengths where blood and tissue are relatively transparent, high quantum yields, and good solubility even at high molar ratios of fluorochrome to antibody. Potentially, conjugation by multiple linkages should minimize hydrolysis in vivo. We conjugated two tumor-targeting monoclonal antibodies: anti-SSEA-1 (IgM, kappa) at ratios of 1.2-35 mol dye/mol antibody and 9.2.27 (IgG2a, kappa) at 0.6-6 mol dye/mol antibody, using the cyanine fluorochromes Cy3.18, Cy5.18, and Cy5.5.18. Nude mice were inoculated using the SSEA-1-expressing MH-15 teratocarcinoma or the 9.2.27 antigen-expressing SK-MEL-2 melanoma to give tumors at several sites. Conjugated antibody was injected, and mice were imaged immediately after injection and at appropriate intervals thereafter using a standard camera lens, dissecting microscope, or endoscopes. Images were acquired using either an image-intensified video camera or cooled CCD cameras. Immediately after injection, major blood vessels and the heart, liver, and kidneys were readily visualized. After 1 day, tumor-targeting antibody conjugates were concentrated in tumors and there was little circulating conjugate; however, the bladder and kidneys were still visible. Tumors labeled by specific antibody were the most fluorescent tissues at 2 days after injection, but non-specific antibody conjugates did not concentrate in the tumors. The small intestine was weakly visualized by both specific and non-specific antibody conjugates. These data support the possibility of visualizing tumor metastasis by optical means, including currently available endoscopes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037679 | PMC |
http://dx.doi.org/10.1007/BF01517001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!