Pseudomonas aeruginosa OprD is a 420-amino-acid protein that facilitates the uptake of basic amino acids, imipenem and gluconate across the outer membrane. OprD was the first specific porin that could be aligned with members of the non-specific porin super-family. Utilizing multiple alignments in conjugation with structure predictions and amphipathicity calculations, an OprD-topology model was proposed. Sixteen beta-strands were predicted, connected by short loops at the periplasmic side. The eight external loops were of variable length but tended to be much longer than the periplasmic ones. Polymerase chain reaction (PCR)-based site-specific mutagenesis was performed to delete separately short stretches (4-8 amino acid residues) from each of the predicted external loops. The mutants with deletions in the predicted external loops L1, L2, L5, L6, L7 and L8 were tolerated in both Escherichia coli and P. aeruginosa. The expressed mutant proteins maintained substantial resistance to trypsin treatment in the context of isolated outer membranes. Proteins with deletions in loops L1, L5, L6, L7 and L8 reconstituted similar imipenem supersusceptibility in a P. aeruginosa OprD:: omega background. The L2-deletion mutant only partially reconstituted super-susceptibility, suggesting that loop L2 is involved in imipenem binding. These data were generally consistent with the topology model.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.1995.tb02319.xDOI Listing

Publication Analysis

Top Keywords

external loops
12
site-specific mutagenesis
8
pseudomonas aeruginosa
8
aeruginosa oprd
8
predicted external
8
loops
5
membrane topology
4
topology site-specific
4
mutagenesis pseudomonas
4
aeruginosa
4

Similar Publications

The asymmetry engine: how plants harness asymmetries to shape their bodies.

New Phytol

January 2025

Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.

Plant development depends on growth asymmetry to establish body plans and adapt to environmental stimuli. We explore how plants initiate, propagate, and regulate organ-wide growth asymmetries. External cues, such as light and gravity, and internal signals, including stochastic cellular growth variability, drive these asymmetries.

View Article and Find Full Text PDF

NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control.

NPJ Aging

January 2025

Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.

Over the past five years, systemic NAD (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.

View Article and Find Full Text PDF

Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.

Pharmaceuticals (Basel)

January 2025

Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Automated stenosis estimation of coronary angiographies using end-to-end learning.

Int J Cardiovasc Imaging

January 2025

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!