Background: The immunosuppressant cyclosporin A (CsA) forms a trimolecular complex with cyclophilin (CPH) and calcineurins (CN) and inhibits CN phosphatase activity. Inhibition of CN phosphatase by CsA prevents the dephosphorylation of a nuclear factor in the cytosol and its nuclear translocation to the nucleus.

Experimental Design: The intracellular distribution of CPH and CN was investigated in permeabilized Jurkat T lymphocytes and MRC fibroblasts using biochemical techniques and confocal microscopy. The site of CsA binding was identified in situ using a photoaffinity label derivative of CsA followed by immunodetection.

Results: Cyclophilin A (CPH-A) and CN display essentially a cytosolic localization by immunofluorescence, and additional nuclear CPH-A and CN are evidenced by Western blot analysis of purified nuclei and immunofluorescence. By contrast, cyclophilin B (CPH-B) has a punctuate and reticular distribution pattern in cytoplasm, indicating an association with the endoplasmatic reticulum, but its main location is in the nuclear matrix, sparing the nucleolar region. For the in situ detection of CsA binding sites, a photolabile cyclosporine derivative (PL-CS) was used that allowed the detection of covalently bound CsA by Ab. Using the biologically active PL-CS, a punctate cytoplasmatic and nuclear immunoreactivity was obtained, which was specific and competed only with active cyclosporine derivatives. Nuclear CPH-A and -B were labeled by PL-CS, and trimolecular complexes of labeled CPH and CN were obtained by chemically cross-linking nuclear extracts.

Conclusions: We describe herein the accessibility of CsA to the nucleus, the presence and labeling in situ of nuclear CPH and CN. The current models of CsA action predict that CsA-CPH complexes inhibit CN activity in the cytosol. However, our present findings invite the hypothesis that CPH may capture the drug into the nucleus and target regulatory proteins or transcriptional control elements.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nuclear
9
situ detection
8
csa
8
csa binding
8
nuclear cph-a
8
cph
5
situ
4
detection cyclosporin
4
cyclosporin evidence
4
evidence nuclear
4

Similar Publications

The current study investigated the geometry, design and solid angle impacts on full energy peak efficiency (FEPE) of NaI(Tl) detectors for a line source. A line source is fabricated using 99mTc solution filled in a borosilicate glass tube of inner diameter 3 mm, tube wall thickness 2.5 mm and length 12.

View Article and Find Full Text PDF

Heteroleptic An (An = U, Np) chlorido-ketoenaminate complexes of the type [AnCl(TFB-BuA)(THF)] ( type: , ; TFB-BuA = 4-(-butylamino)-1,1,1-trifluorobut-3-en-2-one) and the homoleptic Np heteroarylalkenolate complexes [Np(PyTFP)] (, PyTFP = 1-(pyridin-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) and [Np(DMOTFP)] (, DMOTFP = 1-(4,5-dimethyloxazol-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) were synthesized and characterized (SC-XRD, NMR, Vis-NIR, MS). While their solid-state structures compare well to those of their uranium analogues, the behavior in solution showed significant differences. The binding motif of the DMOTFP ligand in complex can change to form two different complex isomers, as seen by paramagnetic chemical shifts in NMR experiments.

View Article and Find Full Text PDF

Relativistic CASPT2/RASPT2 Program along with DIRAC Software.

J Chem Theory Comput

January 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8526, Japan.

Exploring electronic states in actinide compounds is a critical aspect of nuclear science. However, considering relativistic effects and electron correlation in theoretical calculations poses a complex challenge. To tackle this, we developed the CASPT2/RASPT2 program along with the DIRAC program, enabling calculations of electron correlation methods using multiconfigurational perturbation theory with various relativistic Hamiltonians.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.

PLoS Genet

January 2025

Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!