1. Intracellular pH (pHi) was measured by spectrofluorometry in perfused mandibular salivary glands isolated from the rat and loaded with the pH-sensitive fluoroprobe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Cell volume changes were estimated from changes in intracellular water content measured by proton NMR spectroscopy. 2. Stimulation with 1 microM acetylcholine (ACh) led to a 15 +/- 2% decrease in cell volume. A transient decrease in pHi was followed by a sustained increase (0.17 +/- 0.03 pH units) that has previously been attributed to the upregulation of the Na(+)-H+ exchanger. 3. Increasing perfusate osmolarity by addition of 60 mM sucrose caused a 19 +/- 2% decrease in cell volume and a sustained increase in pHi (0.12 +/- 0.01 pH units) that was abolished by 1 mM amiloride. Acid loading experiments indicated that the increase in pHi was due to an alkaline shift in the pH dependence of the Na(+)-H+ exchanger. 4. A 20% reduction in perfusate osmolarity prevented the cell shrinkage normally associated with ACh stimulation and largely abolished the ACh-induced increase in pHi. 5. Steady-state Na(+)-H+ exchanger activity, estimated from the initial rate of change in pHi following addition of amiloride, increased 9-fold during stimulation with ACh. When cell shrinkage was prevented by simultaneous exposure to the hypotonic solution, the activity of the exchanger still increased 7-fold in response to ACh. 6. We conclude that, although cell shrinkage leads to upregulation of the Na(+)-H+ exchanger, this factor alone is insufficient to account for the marked increase in exchanger activity that follows muscarinic stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156608 | PMC |
http://dx.doi.org/10.1113/jphysiol.1995.sp020870 | DOI Listing |
Front Immunol
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing, China.
Front Cell Dev Biol
January 2025
Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan.
The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilan-Universität (LMU) Munich, München, Germany.
Introduction: The autoantibody-driven disease pemphigus vulgaris (PV) impairs desmosome adhesion in the epidermis. In desmosomes, the pemphigus autoantigens desmoglein 1 (Dsg1) and Dsg3 link adjacent cells. Dsgs are clustered by plaque proteins and linked to the keratin cytoskeleton by desmoplakin (Dp).
View Article and Find Full Text PDFWomens Health Rep (New Rochelle)
January 2025
Department of Obstetrics and Gynecology, Al Zahrawi Hospital, Ras Al Khaimah, UAE.
Background: There is a need for signs that will help the midwives or the health care providers attending deliveries to prevent the patient from going into hypovolemic shock, especially when immediate testing is not possible. The study aims to find the correlation between the clinical symptoms and blood loss in women with postpartum hemorrhage.
Methods: It is a descriptive observational study conducted at the Department of Obstetrics and Gynecology, Maternity Hospitals.
J Plankton Res
July 2024
Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!