1. Extracellular and intracellular recording techniques were employed in brain slice preparations to characterize responses of hippocampal tissue in the post-self sustaining limbic status epilepticus (post-SSLSE) model of chronic temporal lobe epilepsy (TLE) as compared with responses in slices from control animals. Experiments were performed > or = 1 mo, and up to 7 mo, after status epilepticus. Two regions of the hippocampal formation linked to different aspects of epileptogenesis, the CA1 region and the dentate gyrus (DG), were studied. In any given experiment, CA1 and DG were examined in different slices from the same animal. 2. Pyramidal cells in CA1 were activated by means of electrodes positioned over fiber bundles that monosynaptically project to these cells, either those located in the stratum lacunosum/moleculare or those in the stratum radiatum. Granule cells were similarly activated by electrodes positioned in the perforant path. Full input-output curves were determined by varying stimulus strength and charting the amplitudes of population spikes (PSs). 3. Two indexes, stimulus sensitivity and responsiveness, were quantified in control tissue and in post-SSLSE tissue by means of input-output curves to provide comparisons between normal and epileptic tissue. There were no changes in stimulus sensitivity, defined as the stimulus intensity required to evoke comparable responses in input-output curves, between control and post-SSLSE tissue. However, responsiveness, defined as the number of extracellular PSs or intracellular action potentials (APs) elicited by a stimulus strength giving rise to maximal-amplitude PSs, proved a reliable method for identifying and categorizing epileptic responses. This index allowed for comparisons between anatomic regions within an experiment as well as among experiments for the same region. Both CA1 pyramidal cells and DG granule cells from post-SSLSE tissue showed hyperresponsiveness relative to control tissue. 4. Control tissue never exhibited > 2 PSs in either CA1 or DG in response to stimuli that produced maximal-amplitude PSs. Therefore a criterion of > or = 3 PSs was adopted to delineate tissue as hyperresponsive on the basis of extracellular responses. In CA1 about one half of the post-SSLSE slices displayed > or = 3 PSs with stimuli giving maximal-amplitude PSs, meeting the criterion for hyperresponsiveness; in DG about one fifth of the slices showed hyperresponsiveness. 5. CA1 and DG differed with respect to the spectrum of hyperresponsiveness they exhibited, this being more robust in CA1. The two regions studied also showed heterogeneity with respect to maximal PS amplitudes.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1995.74.2.816 | DOI Listing |
PLoS One
January 2025
Klab4Recovery Research Program, The City University of New York, Staten Island, New York, United States of America.
Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130012, China; School of Earth and Environmental Sciences, Cardiff University, Cardiff CF10 3AT, UK. Electronic address:
Composing regional total income jointly with government income, private income represents levels of development and affluence from the household perspective. Considering the need for fair carbon emission reduction responsibility distributions among regions with divergent income levels, private income-embedded emission (PIEE) and the inter-regional inequalities remain to be explored. Combining input-output analysis and the Gini coefficient, this study traces the sources and disposals of regional private income in China, as well as their embedded carbon emission flow, and quantifies the distribution and inequality of PIEE across industrial sectors and provincial regions.
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: The neural mechanisms underlying freezing of gait (FOG) in Parkinson's disease (PD) have not been completely comprehended. Sensory-motor integration dysfunction was proposed as one of the contributing factors. Here, we investigated short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), and analyzed their association with gait performance in FOG PD patients, to further validate the role of sensorimotor integration in the occurrence of FOG in PD.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Mila - Quebec Artificial Intelligence Institute, Montréal, Canada.
Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptation are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single-neuron flexibility, and how network-level requirements may have shaped such cellular function.
View Article and Find Full Text PDFBrain Res
December 2024
Département de Psychologie, Université de Montréal, Montréal, QC, Canada. Electronic address:
Non-invasive brain stimulation (NIBS) methods such as paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are used to modulate cortical excitability and reduce symptoms in a variety of psychiatric disorders. Recent studies have shown significant inter-individual variability in the physiological response to these techniques when they are applied over the hand representation of primary motor cortex (M1). The goal of the present study was to identify neurophysiological, neuroanatomical, and neurochemical baseline characteristics that may predict response to commonly used NIBS protocols using data from a previously published study (Therrien-Blanchet et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!