1. The withdrawal properties of the endogenous steroid progesterone (P) were tested in female rats as a function of benzodiazepine modulation of gamma-aminobutyric acid-A (GABAA)-gated current with the use of the whole cell patch-clamp technique on acutely dissociated CA1 hippocampal neurons. In a previous study, this steroid was shown to exhibit withdrawal properties, behaviorally. 2. One day withdrawal from in vivo administration of physiological doses of P (5 mg ip, 5 days/wk for 3 withdrawal cycles) or its metabolite, the GABAA modulator 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha,5 alpha-THP or allopregnanolone, 20 mg/kg ip) prevented the normally potentiating effect of lorazepam (LZM; 10(-7)-10(-4) M) on GABAA-gated current. Withdrawal from 500 micrograms P administered concomitantly with 2 micrograms 17 beta-estradiol also markedly diminished LZM potentiation of GABAA current. This effect was seen only after three withdrawal cycles. 3. P withdrawal produced no inhibitory effect on either basal levels of GABAA-evoked current, the GABAA EC50, or barbiturate (+/-Pentobarbital, 10(-7)-10(-4) M) modulation of this parameter. 4. The effect of steroid withdrawal on LZM modulation of GABAA-evoked current was blocked by picrotoxin as well as by indomethacin, a drug that prevents conversion of P to its metabolite, the GABAA modulator 3 alpha,5 alpha-THP. These results suggest that the withdrawal properties of P may be due to changes in GABAA receptor function produced by 3 alpha,5 alpha-THP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1995.74.1.464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!