Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mpo.2950080314 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, University at Albany, State University of New York Albany New York 12222 USA
The chemical reduction of a pyracylene-hexa--hexabenzocoronene-(HBC)-fused nanographene TPP was investigated with K and Rb metals to reveal its multi-electron acceptor abilities. The reaction of TPP with the above alkali metals, monitored by UV-vis-NIR and H NMR spectroscopy, evidenced the stepwise reduction process. The use of different solvents and secondary ligands enabled isolation of single crystals of three different reduced states of TPP with 1, 2, and 3 electrons added to its π-system.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Lateral flow immunoassays (LFIAs) are widely used for the simple and rapid detection of various targets at the point of need. However, LFIAs enabling the simultaneous detection of multiple analytes and the possibility for naked-eye semi-quantitative analysis are facing various challenges, including the requirement of large sample volumes, low efficiency, and accuracy. This is particularly the case for the competitive immunoassay format targeting the detection of low molecular weight compounds, such as, for example, drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!