The goal of this study was to identify, utilizing apexcardiogram, other noninvasive parameters useful to evaluate the functional condition of the pulmonary vascular bed in patients with mitral stenosis and insufficiency. The patients of both sexes with mitral stenosis and insufficiency underwent left and right heart catetherization and simultaneously a polygraphic study was performed. Recordings of polygraphic as well as hemodynamic parameters were performed under control condition and after 5 min breathing of 100% Oxygen administered by facial mask. These results indicate that changes in rapid filling angle have a close relationship with changes in pulmonary capillary wedge pressure and variation of rapid filling interval are correlated with changes in pulmonary capillary wedge pressure and variation of rapid filling interval are correlated with changes in cardiac output.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rapid filling
12
patients mitral
8
mitral stenosis
8
stenosis insufficiency
8
changes pulmonary
8
pulmonary capillary
8
capillary wedge
8
wedge pressure
8
pressure variation
8
variation rapid
8

Similar Publications

Purpose Of Review: Climate change, biodiversity loss, and pollution present a major threat to health. Although emphasis has been put on physical health impacts, evidence on the mental health consequences is now also accumulating quickly. Given the rapid developments in the field, this article provides an expert opinion on the emerging research.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

Direct ink writing of multiple mineral materials (M) coupled with simulation analysis is an optimization solution in accordance with low-carbon and sustainable manufacturing. It improves the ability to imitate natural biological iterative optimization, and accurately obtained data for geological model tests to effectively help prevent natural disasters. This article investigates the effects of equivalent materials on the direct ink writing and permeability behaviors through geological simulation models.

View Article and Find Full Text PDF

Background: 3D technologies [Virtual and Augmented 3D planning, 3D printing (3DP), Additive Manufacturing (AM)] are rapidly being adopted in the healthcare sector, demonstrating their relevance in personalized medicine and the rapid development of medical devices. The study's purpose was to understand the state and evolution of 3DP/AM technologies at the Point-of-Care (PoC), its adoption, organization and process in Spanish hospitals and to understand and compare the evolution of the models, clinical applications, and challenges in utilizing the technology during the COVID-19 pandemic and beyond.

Methods: This was a questionnaire-based qualitative and longitudinal study.

View Article and Find Full Text PDF

Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!