The physical aspects of the primary charge separation process in bacterial photosynthesis are discussed. The donor-acceptor model of electron tranfer through proteins is used. The kinetics of the processes of the photosynthetic reaction centers are considered and their energetic scheme is constructed by means of the nonequilibrium density matrix method. It is shown that the theory is in good agreement with experiment if one takes into account the influence of vibrational sublevels of states which take part in transitions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

photosynthetic reaction
8
[charge separation
4
separation bacterial
4
bacterial photosynthetic
4
reaction centers]
4
centers] physical
4
physical aspects
4
aspects primary
4
primary charge
4
charge separation
4

Similar Publications

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

Phosphorus-solubilizing fungi promote the growth of P. Y. Li by regulating physiological and biochemical reactions and protecting enzyme system-related gene expression.

Front Genet

January 2025

Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.

Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.

View Article and Find Full Text PDF

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.

View Article and Find Full Text PDF

Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing.

Adv Healthc Mater

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF

Genome-wide identification and characterization of the thioredoxin (TRX) gene family in tomato (Solanum lycopersicum) and a functional analysis of SlTRX2 under salt stress.

Plant Physiol Biochem

January 2025

The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, 110866, Shenyang, Liaoning, China. Electronic address:

Thioredoxin is a multifunctional acidic protein widely presented in organisms that regulates intracellular redox processes, participating in a series of biochemical reactions in cells to affect the growth and development of plants. Although the thioredoxin (TRX) gene family has been widespread recognized across various plant species, and the tomato genome has been sequenced for years now, of tomato (Solanum lycopersicum) has remained largely uncharted in terms of identifying and unraveling the functional intricacies of is TRX genes. In this study, 53 SlTRX genes were identified, unevenly distributed across 11 of the 12 tomato chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!