A cinnamoyl-coenzyme A reductase catalyzing the NADPH-dependent reduction of substituted cinnamoyl-CoA thiol esters to the corresponding cinnamaldehydes was isolated from cell suspension cultures of soybean (Glycine max L. var. Mandarin). A 1660-fold purification of the enzyme was achieved by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, hydroxyapatite and Sephadex G-100 and affinity chromatography on 5'-AMP-Sepharose. The apparent molecular weight of the reductase was found to be about 38 000 on the basis of the elution volume from a Sephadex G-100 column. Maximum rate of reaction was observed between pH 6.0 and 6.2 in 0.1-0.2 M citrate buffer at 30 degrees C. The enzyme was markedly inhibited by thiol reagents. The reductase showed a high degree of specificity for cinnamoyl-CoA esters. Feruloyl-CoA was the substrate with the lowest Km value (73 muM) and highest V (230 nkat/mg) followed by 5-hydroxy-feruloyl-CoA, sinapoyl-CoA, p-coumaroyl-CoA, caffeoyl-CoA and cinnamoyl-CoA. No reaction took place with acetyl-CoA. The Km value for NADPH varied with the type of substrate. Km values of 28, 120, and 290 muM were found with feruloyl-CoA, sinapoyl-CoA, and p-coumaroyl-CoA, respectively. The rate of reaction observed with NADH was only about 5% of that found with NADPH. The reaction products CoASH and NADP+ inhibited the reaction. The Ki values were in the range of 0.5-1 mM and the inhibition was of a noncompetitive (mixed) type. The role of the reductase in the biosynthesis of lignin precursors is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1976.tb10370.xDOI Listing

Publication Analysis

Top Keywords

lignin precursors
8
cell suspension
8
suspension cultures
8
cultures soybean
8
sephadex g-100
8
rate reaction
8
reaction observed
8
sinapoyl-coa p-coumaroyl-coa
8
reductase
5
reaction
5

Similar Publications

Throughout the recent years, water bodies have been significantly contaminated via various industrial and pollution wastes posing threats to the living. To tackle the situation, Lignin-Based Hydrogels have appeared as a material with great potential for wastewater treatment. Biomass-derived polymers for wastewater treatment present a sustainable replacement to plastics based on petroleum owing to its biocompatibility, affordability, eco-friendliness and biodegradability.

View Article and Find Full Text PDF

The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.

View Article and Find Full Text PDF

Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7.

Food Chem

January 2025

School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.

View Article and Find Full Text PDF

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!