Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1976.tb10362.x | DOI Listing |
Anal Chem
January 2025
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan.
Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore.
View Article and Find Full Text PDFSci Adv
January 2025
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Controlling the reactivity of bonds along polymer chains enables both functionalization and deconstruction with relevance to chemical recycling and circularity. Because the substrate is a macromolecule, however, understanding the effects of chain conformation on the reactivity of polymer bonds emerges as important yet underexplored. Here, we show how oxy-functionalization of chemically recyclable condensation polymers affects acidolysis to monomers through control over distortion and interaction energies in the rate-limiting transition states.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.
Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Tennessee Tech University, Cookeville, Tennessee 38505, USA.
The first ground-state rotational spectrum of 3-methylstyrene (3MS) was measured by Fourier transform microwave spectroscopy under supersonic jet-cooled conditions. Transitions were assigned for two conformers: cis-3MS and trans-3MS. In the cis conformer, the vinyl group is oriented toward the methyl group, while in the trans conformer, it is positioned away from the methyl.
View Article and Find Full Text PDFSmall
January 2025
Leibniz-Institut für Polymerforschung e. V, Hohe Str. 6, 01069, Dresden, Germany.
Polyelectrolyte brushes (PEBs) undergo conformational transitions due to changes in pH and/or ionic strength, which is leveraged as smart surfaces and on-demand drug-release systems. However, probing conformational transitions of functional PEBs has remained challenging due to low spatiotemporal resolution of characterization methods. Herein, fluorescently-coupled PEBs are devised that give rise to Förster Resonance Energy Transfer (FRET) intrinsically coupled to conformational transitions of chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!