The trace element balance in laboratory rats was found to be affected by somewhat lasting application of "Unitiol". Unambiguous decline of manganese, copper, and zinc concentrations was recorded from blood and liver. Complex fixation of copper was stronger than that of the other elements tested. No dose-dependent changes were observed with the experimental arrangement described. The chromium levels in all examined organs were affected but slightly or not at all. The proposal is made that long-term therapeutic use of chelate formers should be accompanied by properly balanced application of essential trace elements.

Download full-text PDF

Source

Publication Analysis

Top Keywords

trace elements
8
[control trace
4
elements rat
4
rat heavy
4
heavy metal
4
metal antidote
4
antidote "unithiol"
4
"unithiol" sodium-23-
4
sodium-23- dimercaptopropane
4
dimercaptopropane sulfonate]
4

Similar Publications

Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.

Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.

View Article and Find Full Text PDF

Unexpected species diversity in the understanding of selenium-containing soil invertebrates.

Sci Rep

January 2025

Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.

Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.

View Article and Find Full Text PDF

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants.

Nat Commun

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!