The kinetics of oxygen utilization by the microaerophile Campylobacter sputorium subspecies bubulus was studied. With formate as substrate two enzyme systems were found to be responsible for electron transfer between formate and oxygen. In the case of lactate oxidation one enzyme system could account for the activity measured. One of the formate-oxidizing systems possessed a high affinity for oxygen [Km(O2) = approx. 4 microM O2]. From inhibitor studies it was concluded that a respiratory chain was involved in its activity. Respiration by this system must be responsible for proton translocation and electron transport-linked phosphorylation at formate oxidation. The other enzyme system had an extremely low affinity for oxygen [Km (O2) = approx. 1 mM O2]. It was tentatively identified as the H2O2-producing formate oxidase previously found in C. sputorum. The H2O2 production by this enzyme is implicated in an explantation of the microaerophilic nature of C. sputorum. Sensitivity of formate dehydrogenase to H2O2 was demonstrated. The influence of the formate concentration on aerobic formate oxidation was determined. The pH- and temperature dependencies of oxygen uptake with formate as substrate were examined at air-saturation and at a low dissolved oxygen tension.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00428017DOI Listing

Publication Analysis

Top Keywords

formate substrate
12
formate
9
subspecies bubulus
8
oxidation enzyme
8
enzyme system
8
affinity oxygen
8
formate oxidation
8
oxygen
7
oxygen consumption
4
consumption campylobacter
4

Similar Publications

At a time when increasing attention is paid to sustainability in chemistry, levulinic acid (LA) is one of the most important platform chemicals for the goal of overcoming our dependence on fossil raw materials. In this work, a new catalytic route for the effective utilization of these humin byproducts, enabling a cyclic synthesis of LA using formic acid (FA) as organocatalyst is proposed. Selective catalytic oxidation (SCO) of humins using the H5PV2Mo10O40 (HPA-2) polyoxometalate (POM) catalyst produces FA that can be isolated from the aqueous reaction mixture by using nanofiltration membranes accompanied by a complete catalyst recycling (>99%).

View Article and Find Full Text PDF

Converting CO to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.

View Article and Find Full Text PDF

Empowering Sustainable Energy: Lead-Coated Plastic Chip Electrodes for Effective CO Reduction.

Langmuir

January 2025

Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.

Electrochemical CO reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO into valuable chemicals and fuels, thereby reducing atmospheric CO levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CORR.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

In this study, an iridium-catalyzed selective 1,4-reduction of α,β-unsaturated carbonyl compounds is realized, with water as a solvent and formic acid as a hydride donor. The new efficient iridium catalyst features a 2-(4,5-dihydroimidazol-2-yl)quinoline ligand. The chemoselectivity and catalyst efficiency are highly dependent on the electronic and steric properties of the substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!