A clinical evaluation in 59 ptients showed that the premoistened form of polyamide 6 nylon suture material (Ethilon; Ethicon) is significantly better for the closing of clean surgical skin incisions than the unmoistened form. The moistening agent presumably did not adversely affect wound healing.
Download full-text PDF |
Source |
---|
Chem Pharm Bull (Tokyo)
January 2025
Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University.
This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.
View Article and Find Full Text PDFMolecules
December 2024
IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal.
Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea.
Transport equipment manufacturers in the automotive and aerospace industries are focused on developing materials that enhance fuel efficiency and reduce carbon dioxide emissions. A significant approach is employing lightweight materials like aluminum, magnesium, and polymer-based composites. Polyamide-based composites, particularly nylon 66, as viable alternatives due to their excellent rigidity, chemical resistance, and thermal stability are investigated to address the limitations of traditional thermosetting resins, which are difficult to recycle and have lengthy molding processes that hinder mass production.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Nylon 12 is valued for its exceptional properties and diverse industrial applications. Traditional chemical synthesis of nylon 12 faces significant technical challenges and environmental concerns, while bioproduction from plant-extracted decanoic acid (DDA) raises issues related to deforestation and biodiversity loss. Here, we show the development of an engineered Escherichia coli cell factory capable of biosynthesizing the nylon 12 monomer, ω-aminododecanoic acid (ω-AmDDA), from glucose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!