Entropy production must accompany the utilization of free energy in any cellular process and is a measure of the degree of randomness or molecular disorder within a system. A highly entropized system approaches equilibrium, is incapable of performing work, and never unrandomizes spontaneously. Therefore, chemical reactions are reversible only if the entropy of the system can be reduced through the expenditure of free energy and at the expense of an increase in the entropy of the surroundings. This concept is discussed in terms of energy production and utilization by myocardial cells under normal and diseased states.
Download full-text PDF |
Source |
---|
Nanoscale
January 2025
Hunan Automotive Engineering Vocational University, Zhuzhou 412001, P. R. China.
The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.
View Article and Find Full Text PDFBrain
January 2025
Department of Child and Adolescent Psychopathology, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France.
Computational neuropsychiatry is a leading discipline to explain psychopathology in terms of neuronal message passing, distributed processing, and belief propagation in neuronal networks. Active Inference (AI) has been one of the ways of representing this dysfunctional signal processing. It involves that all neuronal processing and action selection can be explained by maximizing Bayesian model evidence, or minimizing variational free energy.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India.
Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India.
Pyrazine (tppz) and 5-sulfosalicylic acid (HSSA) mixed-bridging Cd(II)-CP, {[Cd(HSSA)(tppz)]} (), is highly luminescent, and the emission has been quenched selectively by Al in the presence of other cations, with a limit of detection (LOD) of 43.9 nM (1.18 ppb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!