Acute withdrawal of estrogen from chicks leads to a precipitous decline in egg white protein synthesis and egg white mRNAs in the oviduct. In this paper we explore the biochemical basis of this phenomenon as well as the capacity of the "withdrawn" tubular gland cells to be restimulated with steroid hormones. During withdrawal, the decline in ovalbumin mRNA was closely correlated with the decline in nuclear estrogen receptors. Within 2-3 d of estrogen removal a withdrawn state was established and then maintained, as defined by a 1,000-fold-lower level of ovalbumin mRNA and a 20-fold-lower level of nuclear estrogen receptors, relative to the estrogen-stimulated state. The number of active forms I and II RNA polymerases declined by 50% during this time. Histological examination of oviduct sections and cell suspensions, combined with measurements of DNA content, revealed that tubular gland cells persisted as a constant proportion of the cell population for 3 d after estrogen removal. Despite a 1,000-fold decrease in the content of ovalbumin mRNA, the ovalbumin gene remained preferentially sensitive to digestion by DNase I. When 3-d-withdrawn oviducts were restimulated with either estrogen or progesterone, in situ hybridization revealed that greater than or equal to 98% of the tubular gland cells contained ovalbumin mRNA. Induction by a suboptimal concentration of estrogen was correlated with a lower concentration of ovalbumin mRNA in all cells rather than fewer responsive cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110703 | PMC |
http://dx.doi.org/10.1083/jcb.87.1.142 | DOI Listing |
Chin Med J Pulm Crit Care Med
December 2024
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
Background: Glucocorticoid-induced transcript 1 (GLCCI1) has been reported to be associated with the efficiency of inhaled glucocorticoids in patients with asthma. This study aimed to investigate the role of GLCCI1 in the regulation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) by the phosphatidylinositol 3-kinase (PI3K) pathway in the pathogenesis of allergic asthma.
Methods: The expression levels of genes encoding GLCCI1, NLRP3 inflammasome components, and PI3K pathway-related indicators were detected in cells isolated from induced sputum from patients with asthma and healthy controls.
Am J Transl Res
December 2024
Department of Otolaryngology-Head and Neck Surgery, Jinhua People's Hospital Jinhua 321000, Zhejiang, China.
Objective: This study aimed to investigate the effects of cinnamaldehyde (CA) intervention on transient receptor potential melastatin 8 (TRPM8) expression in human nasal epithelial cells (HNECs) and mouse models of chronic rhinosinusitis (CRS) and determine the alleviating effects of CA on CRS.
Methods: HNECs were treated with CA, and the protein levels and mRNA expression of pro-inflammatory cytokines, namely, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), were measured by enzyme-linked immunosorbent assay and real-time reverse-transcription polymerase chain reaction (RT-PCR). TRPM8 expression levels were examined by RT-PCR and western blot.
Foods
December 2024
College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
Previous studies have shown that supplementation with specific probiotics can be used to alleviate allergy symptoms. The purpose of this study was to evaluate the anti-allergic effects of ZW3 (ZW3) in ovalbumin (OVA)-induced allergic mice. The mice were divided into six groups: the food allergy group, positive group ( GG), low-dose ZW3 group, middle-dose ZW3 group, high-dose ZW3 group, and the control group involving healthy mice.
View Article and Find Full Text PDFEBioMedicine
January 2025
Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR, Grenoble, 5309, France.
Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.
View Article and Find Full Text PDFBiomaterials
January 2025
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China. Electronic address:
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!