The mechanism of integration of osmo- and volume-regulating systems after intake of 3, 5, 7, and 10% of body weight water, salt, and volume loads, was studied in adult rats. The changes of diuretic and ionuretic renal functions depended on the character and quantity of shifts caused in organism. The volume shift is the starting mechanism for stabilization of disturbed balance while the osmotic factor secures the final regulation of watersalt homeostasis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water salt
8
salt volume
8
[integration mechanisms
4
mechanisms regulating
4
regulating water-salt
4
water-salt equilibrium
4
equilibrium increasing
4
increasing water
4
volume loading]
4
loading] mechanism
4

Similar Publications

Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.

View Article and Find Full Text PDF

Continuous Electrochemical Carbon Capture via Redox-Mediated pH Swing─Experimental Performance and Process Modeling.

J Phys Chem Lett

January 2025

Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.

We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.

View Article and Find Full Text PDF

Hydrogen evolution from water, catalyzed by solar energy, is a promising yet challenging endeavor. Small-sized catalysts usually exhibit high utilization and high performance in the hydrogen evolution field. However, the high surface energy tends to make them aggregate.

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!