Phenylalanine ammonia-lyase extracted form Rhodotorula rubra (IFO 1101) was immobilized into cellulose triacetate fibers made hemocompatible by physical blend with a platelet anti-aggregating agent. The entrapped enzyme could operate at physiological values of phenylalanine and tyrosine reducing their level to traces within a few hours. The optimum pH value for the entrapped enzyme shifted from 8.0 to 9.0. At blood pH the activity was about 68 per cent of the maximum. The entrapped enzyme retained its original activity in blood for more than 50 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-9084(80)80103-9 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:
Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.
View Article and Find Full Text PDFTalanta
January 2025
Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:
Immobilization of fragile enzymes is vital to expanding its application in the extracellular environment. Covalent organic frameworks (COFs), as a class of emerging porous materials, are promising platforms for enzyme immobilization owing to their high porosity and tunable structure. However, the interior pores of COFs often fail to play their roles because of inaccessibility, resulting in decreased performance of immobilized enzymes.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Liposome Res
January 2025
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.
This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A (sPLA) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A (sPLA).
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Biosensors Analysis Environment Group (BAE-LBBM), Université de Perpignan, Via Domitia, 52 Avenue Paul Alduy, Cedex, F-66860 Perpignan, France.
A sensitive and reliable electrochemical biosensor for the detection of benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC), the most commonly used disinfectant biocides in the agri-food industry, is described. Acetylcholinesterase from (DM AChE) and butyrylcholinesterase from horse serum (BChE) were immobilized by entrapment in a photocrosslinkable polymer on the surface of carbon screen-printed electrodes. Preliminary tests conducted in phosphate buffer showed limits of detection (LODs) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!