A rapid, biphasic inhibition of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34) was induced by intragastric administration of R,S-mevalonolactone. The initial phase had a t1/2 of 5.3 min. 30 min after drug administration the inhibition could be reversed in vitro by cytosol or a partially purified cytosolic activator. The reactivation was prevented by 50mM NaF. Thus the initial inhibition appeared to be the result of reversible inactivation possibly by phosphorylation of the enzyme. Consistent with this was the finding that the net reductase activator (phosphatase) activity present in cytosol was decreased 64% in these animals. The rapid reversible inhibition could not be reproduced in vitro by incubating microsomes or postmitochondrial supernatants with mevalonate suggesting the intact cell was necessary for expression of the effect. The second phase of inhibition due to mevalonate administration had a t1/2 of 1.3 h and was not reversible. It was attributed to inhibition of synthesis of reductase probably as the result of sterol accumulation in the cell. Perfusion of 25-hydroxycholesterol through livers isolated from animals at the circadian peak of cholesterol biosynthesis resulted in a rapid, 75-80% inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. This inhibition was not reversed by incubation with cytosol or partially purified activator. Further, there was no apparent change in net activator levels in cytosol from the livers perfused with 25-hydroxycholesterol. This suggests the effect of this sterol on reductase does not involve reversible phosphorylation-dephosphorylation. On the basis of this study it is postulated that there are at least two mechanisms by which 3-hydroxy-3-methylglutaryl coenzyme A reductase activity can be rapidly suppressed in the intact liver. One is reversible and appears to be the result of alteration in the reductase kinase-phosphatase system. The second is irreversible and may be due to acceleration of the normal degradation system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2760(80)90186-1DOI Listing

Publication Analysis

Top Keywords

3-hydroxy-3-methylglutaryl coenzyme
16
coenzyme reductase
16
reductase
8
intact liver
8
inhibition
8
inhibition reversed
8
cytosol partially
8
partially purified
8
reversible
5
studies mechanisms
4

Similar Publications

In addition to being linked to an excess of lipid accumulation in the liver, being overweight or obese can also result in disorders of lipid metabolism. There is limited understanding regarding whether different levels of protein intake within an energy-restricted diet affect liver lipid metabolism in overweight and obese rats and whether these effects differ by gender, despite the fact that both high protein intake and calorie restriction can improve intrahepatic lipid. The purpose of this study is to explore the effects and mechanisms of different protein intakes within a calorie-restricted diet on liver lipid metabolism, and to investigate whether these effects exhibit gender differences.

View Article and Find Full Text PDF

Immune-mediated necrotising myopathy (IMNM) can be associated with autoantibodies to 3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR). We present a case of a man in his 60s with a 13-year history of relapsing anti-HMGCR-positive IMNM, intermittently partially responsive to various treatments including corticosteroids, methotrexate, mycophenolate, intravenous immunoglobulin, abatacept and rituximab. After a repeat presentation with severe weakness, plasmapheresis was commenced, resulting in rapid and significant improvement in muscle strength and biochemical markers, which was sustained for several months.

View Article and Find Full Text PDF

Targeting the mevalonate pathway potentiates NUAK1 inhibition-induced immunogenic cell death and antitumor immunity.

Cell Rep Med

January 2025

Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

The induction of immunogenic cell death (ICD) impedes tumor progression via both tumor cell-intrinsic and -extrinsic mechanisms, representing a robust therapeutic strategy. However, ICD-targeted therapy remains to be explored and optimized. Through kinome-wide CRISPR-Cas9 screen, NUAK family SNF1-like kinase 1 (NUAK1) is identified as a potential target.

View Article and Find Full Text PDF

Virtual screening and evaluation of bioactive peptides from as potential HMGCR inhibitors for hyperlipidemia treatment.

Front Nutr

December 2024

Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China.

Introduction: Hyperlipidemia remains a major disease threatening global public health. The morbidity and mortality associated with cardiovascular diseases have been increasing. The inhibition of 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a key enzyme in the cholesterol synthesis pathway, can effectively reduce cholesterol levels.

View Article and Find Full Text PDF

Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2.

J Hazard Mater

January 2025

Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China. Electronic address:

Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!