Synchronous morphophysiological reaction of intramural bushy receptors to an extreme mechanical stimulation produced by an increased pressure and hence, by an overdilatation of the urinary bladder wall has been studied in Rana temporaria. It has been demonstrated that the extreme mechanical factor inhibits the receptor spike activity. It is proved by: a decreased affinity of the receptors to vital methylene blue staining; changes in the form of the receptor patches; decreasing mobility of granules in the patches; increase in staining time. It is evident that energy exhaustion of the receptor as a result of overexcitement is responsible for these shifts. In the previous experiments an adequate (weaker) dilatation of the urinary bladder wall did not inhibit the receptor spike activity and morphological changes had different dynamics. The results of the two experiments are compared.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extreme mechanical
12
mechanical stimulation
8
urinary bladder
8
bladder wall
8
receptor spike
8
spike activity
8
[effect extreme
4
stimulation structuro-functional
4
structuro-functional changes
4
changes bushy
4

Similar Publications

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

The unprimed right ventricle is exquisitely sensitive to acute elevations in afterload. High pulmonary vascular tone incurred with acute pulmonary embolism has the potential to induce obstructive shock and circulatory collapse. While emergent pulmonary reperfusion is essential in severe circumstances, an important subset of pulmonary embolism patients may exhibit a less extreme presentation posing a management dilemma.

View Article and Find Full Text PDF

Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands.

J Am Chem Soc

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection.

View Article and Find Full Text PDF

ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!