Download full-text PDF

Source
http://dx.doi.org/10.1016/0008-8749(80)90009-xDOI Listing

Publication Analysis

Top Keywords

environmental chemical
4
chemical dissociation
4
dissociation antibody-dependent
4
antibody-dependent phagocytosis
4
phagocytosis lysis
4
lysis mediated
4
mediated macrophages
4
macrophages stimulation
4
stimulation lysis
4
lysis sulfhydryl-blocking
4

Similar Publications

The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive and a Gram-negative .

View Article and Find Full Text PDF

Ultra-precise ruler for ammonia nitrogen quantification in electrochemical synthesis experiments.

Anal Methods

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.

The field of electrochemical ammonia synthesis has made rapid advancements, attracting a large number of scientists to contribute to this area of research. Accurate detection of ammonia is crucial in this process for evaluating the efficiency and selectivity of electrocatalysts. In this study, we systematically investigate the indophenol blue method for ammonia detection, examining the effects of key factors such as solution pH, nitrate concentration, and metal ion concentration on measurement accuracy.

View Article and Find Full Text PDF

Natural biomolecules for cell-interface engineering.

Chem Sci

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China

Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation.

View Article and Find Full Text PDF

Semiconductor magic-sized nanoclusters (MSCs) possess atomic-level compositional precision and ultrasmall dimensions, allowing accurate modulation of electrochemiluminescence (ECL) properties, essential for advanced bioanalytical applications. However, low intrinsic ECL intensity and poor stability in bipolar electrode (BPE)-ECL systems hinder their broader use. In this work, we addressed these limitations through doping and direct optical crosslinking strategies, achieving a 24-fold boost in the ECL signal and a fivefold stability increase for doped (CdS):Ag MSCs compared with original (CdS) MSCs.

View Article and Find Full Text PDF

Reversibly Tuning Electrochemiluminescence with Stimulated Emission Route for Single-Cell Imaging.

Research (Wash D C)

October 2023

State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China.

Electrochemiluminescence (ECL) has established itself as an excellent transduction technique in biosensing and light-emitting device, while conventional ECL mechanism depending on spontaneous emission of luminophores lacks reversibility and tunable emission characters, limiting the universality of ECL technique in the fields of fundamental research and clinical applications. Here, we report the first observation of stimulated emission route in ECL and thus establish a reversible tuning ECL microscopy for single-cell imaging. This microscopy uses a focused red-shifted beam to transfer spontaneous ECL into stimulated ECL, which enables selective and reversible tuning of ECL emission from homogeneous solution, single particles, and single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!