Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stopped-flow kinetic studies of liver aldolase and of mixed liver-muscle aldolase catalyzed reactions of fructose 1,6-bisphosphate (FBP) have been carried out and interpreted by computer simulation. These experiments indicate no utilization or binding of the alpha anomer by the liver enzyme unlike the findings for either the muscle aldolase which binds the alpha anomer nonproductively or the yeast aldolase which catalyzes its cleavage. Both beta-fructose 1,6-bisphosphate and its acyclic keto form may serve as substrates, necessitating the spontaneous anomerization of the alpha anomer before its utilization. Thus, liver aldolase cleaves 100% of the substrate present in the millisecond time scale because of the inability to bind alpha-FBP, allowing rapid spontaneous anomerization. This result fulfills earlier predictions of the differing specificities and substrate binding properties for aldolases from yeast, muscle, and liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00553a010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!