Three cases of a small supernumerary chromosomal anomaly of essentially unknown origin associated with wide variability of clinical expression are reported. Case II has, in addition, a pericentric inversion of chromosome 5, which enables us to propose a mechanism, involving an unsuccessful crossing over, for the origin of the supernumerary chromosome.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chromosomal anomaly
8
three cases
8
inversion chromosome
8
supernumerary small
4
small chromosomal
4
anomaly report
4
report three
4
cases including
4
including familial
4
familial inversion
4

Similar Publications

Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells.

View Article and Find Full Text PDF

Development of Speech and Communication in Polish Children with 22q11.2 Deletion Syndrome: A Cross-Sectional Study.

Brain Sci

December 2024

Faculty of Biomedical Engineering, Department of Medical Informatics and Aritificial Intelligence, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

Background/objectives: 22q11.2 microdeletion syndrome (22q11DS) is a genetic disease caused by aberration of chromosome 22 that results in some phenotypic features and developmental disorders. This paper presents a cross-sectional study on speech and communication of Polish children with 22q11DS.

View Article and Find Full Text PDF

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!