Download full-text PDF

Source

Publication Analysis

Top Keywords

effects shortwave
4
shortwave radiofrequencies
4
radiofrequencies tumor
4
tumor growth
4
effects
1
radiofrequencies
1
tumor
1
growth
1

Similar Publications

Short-Wave Infrared Optoelectronics with Colloidal CdHgSe/ZnCdS Core/Shell Nanoplatelets.

ACS Photonics

January 2025

Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

Colloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.

View Article and Find Full Text PDF

Background: Nonthermal, pulsed shortwave (radiofrequency) therapy (PSWT) is a nonpharmacologic, noninvasive modality that limited evidence suggests provides analgesia. Its potential favorable risk-benefit ratio stems from its lack of side effects and significant medical risks, applicability to any anatomic location, long treatment duration, and ease of application by simply affixing it with tape. Even with a relatively small treatment effect, PSWT might contribute to a multimodal analgesic regimen, similar to acetaminophen.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Enhanced Light Response Performance of Ceria-Based Composites with Rich Oxygen Vacancy.

Molecules

December 2024

Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, Shenyang 110819, China.

Increasing the concentration of oxygen vacancies in ceria-based materials to solve the bottleneck of their applications in various fields has always been a research hotspot. In this paper, ceria-based cerium-oxygen-sulfur (Ce-O-S) composites that were composed of CeO, CeOS, and Ce(SO) were synthesized by a precipitation method. The compositional, structural, morphological, and light response characteristics of prepared Ce-O-S composites were investigated by various characterization techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!