The paper deals with properties of Aspergillus oryzae (strain KC) purified aminopeptidase. The enzyme is homogeneous in electrophoresis in polyacrylamide gel and enzyme-electrophoresis with the synthetic substrate leucyl-beta-naphthylamide applied. The molecular mass is 60000-61000 Daltons. The amino acidic composition of the enzyme is characterized by a high content of dicarboxylic acids. The substrate specificity is studied. Leucyl-glycyl-glycin and leucinamide are most intensive in splitting. Peptides with a blocked amino group are not hydrolyzed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

properties aspergillus
8
aspergillus oryzae
8
[physicochemical enzymatic
4
enzymatic properties
4
oryzae aminopeptidase]
4
aminopeptidase] paper
4
paper deals
4
deals properties
4
oryzae strain
4
strain purified
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study.

Bioorg Chem

January 2025

Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:

Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.

View Article and Find Full Text PDF

Synthesis, molecular dynamics simulation and antimicrobial activity of novel s-triazine clubbed with three different hybrid pharmacophores.

Biochem Biophys Res Commun

January 2025

Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, University of Johannesburg, Auckland Park Kingsway Campus, 2006, South Africa. Electronic address:

To address microbial infections and combat drug resistance, we designed, synthesized, and evaluated three novel s-triazine clubbed pharmacophores: 1-acetylpyrazoline (5a-e), 2-aminopyrimidine (6a-e), and 1,5-benzodiazepine (7a-e). These were derived from chalcone (4a-e), showing improved pharmacological profiles. The compounds underwent characterization by FTIR, NMR, and Mass Spectroscopy, and their antimicrobial activities, along with structure-activity relationships (SAR), were assessed using in silico and in vitro methods.

View Article and Find Full Text PDF

In this study, copper nanoparticles with an average particle size of 2-4 nm were synthesized using the green extract of Thunb. The catalytic activity and dye degradation efficiency of Cu NPs were evaluated using ultraviolet spectroscopy. To confirm that Cu NPs can continuously remove organic dyes, this study used Cu/Lj-C composite material adsorbed on cotton balls as a simulated bed to study the cyclic catalytic activity of Cu NPs for the reduction of methylene blue by sodium borohydride (NaBH).

View Article and Find Full Text PDF

Wood has a number of undesirable inherent properties that limit its ability to be used in a wider range of applications. For this reason, in this study, copper-montmorillonite nanoparticles were prepared from natural biomass tung oil and the natural mineral montmorillonite by the ion exchange method. Modified wood with tung oil intercalated with copper-montmorillonite was prepared by a simple and environmentally friendly impregnation and natural curing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!