Download full-text PDF

Source
http://dx.doi.org/10.1016/0091-7435(80)90079-1DOI Listing

Publication Analysis

Top Keywords

contribution ionizing
4
ionizing radiation
4
radiation cancer
4
cancer mortality
4
mortality united
4
united states
4
contribution
1
radiation
1
cancer
1
mortality
1

Similar Publications

Trends in dentomaxillofacial radiology.

World J Radiol

January 2025

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06500, Türkiye.

Oral and maxillofacial diagnostic imaging is of paramount importance in dental clinical diagnosis, treatment planning, and follow-up procedures. Periapical radiographic examination and numerous panoramic systems are used in routine clinical dental practice. Cone beam CT is widely used and currently the method of choice in oral and maxillofacial implantology, endodontics, maxillofacial surgery, periodontics, degenerative temporomandibular joint disease, orthodontics, airway studies, sleep disorders, and forensic dentistry.

View Article and Find Full Text PDF

Developing Adverse Outcome Pathways to support radioecological risk assessment: Challenges and insights.

Environ Toxicol Chem

January 2025

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Laboratoire d'Ecologie et d'Ecotoxicologie des Radionucléides, Cadarache, 13115 France Saint Paul-Lez-Durance.

Environmental pollution associated with long term effects, especially in the case of ionizing radiation, poses significant risks to wildlife, necessitating a more nuanced approach to Ecological Risk Assessment (ERA). In radioecology, current methods, as outlined by the International Commission on Radiological Protection (ICRP), focus primarily on exposure and individual/population-level effects, often both suffering a lack of ecological realism due to the nature of data used, and, sidelining a big amount of critical non-individual effects such as sub-individual one like genotoxicity. This review aims to address these gaps by suggesting the integration of New Approach Methods (NAMs) and the Adverse Outcome Pathway (AOP) framework in the field of radioecology.

View Article and Find Full Text PDF

Assessment of the effectiveness of Monte Carlo Simulation for dose control at the Moroccan Boukhalef ionization facility.

Appl Radiat Isot

January 2025

Department of Physics, Nuclear Physics and Techniques Team, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.

Controlling the absorbed dose received by a target is a major challenge encountered during ionizing radiation applications. For experimentally measuring absorbed dose, dosimetric systems are used. On the other hand, in addition to experimental methods of dose measurement, there are other alternatives for calculating absorbed doses, these are numerical methods based on the Monte Carlo method which are very sophisticated and widely used throughout the world.

View Article and Find Full Text PDF

Background: The consequence of non-compliance with patient radiation safety standards increases unnecessary radiation exposure with high chances of harmful biological effects. Radiographers are trained to prevent these harmful effects by enforcing radiation protection, which is achieved through proper techniques, equipment, shielding materials and beam collimation.

Aim: The study aimed to explore compliance with radiation protection by radiographers in Eswatini public health facilities (PHFs).

View Article and Find Full Text PDF

Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy.

Nanoscale Adv

January 2025

Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain

Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!