Locomotive disorders constitute a serious problem in horse racing which will only be rectified by a better understanding of the causative factors associated with disturbances of gait. This study describes a system for the quantitative analysis of the locomotion of horses at speed. The method is based on high-speed cinematography with a semi-automatic system of analysis of the films. The recordings are made with a 16 mm high-speed camera run at 500 frames per second (fps) and the films are analysed by special film-reading equipment and a mini-computer. The time and linear gait variables are presented in tabular form and the angles and trajectories of the joints and body segments are presented graphically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-3306.1980.tb02309.x | DOI Listing |
Cells
February 2024
Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan.
Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells.
View Article and Find Full Text PDFA four-dimensional (4D) mid-infrared laser absorption imaging technique has been developed and demonstrated for quantitative, time-resolved, volumetric measurements of temperature and species concentration in dynamic combustion flows. This technique employs a dual high-speed infrared camera setup to capture turnable radiation from a quantum cascade laser near 4.85 µm to resolve rovibrational absorption transitions of carbon monoxide at two orthogonal projection angles.
View Article and Find Full Text PDFSensors (Basel)
October 2023
Sphere Entertainment Co., New York, NY 10121, USA.
We present a 2D-stitched, 316MP, 120FPS, high dynamic range CMOS image sensor with 92 CML output ports operating at a cumulative date rate of 515 Gbit/s. The total die size is 9.92 cm × 8.
View Article and Find Full Text PDFUltrason Sonochem
May 2021
Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia. Electronic address:
The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs.
View Article and Find Full Text PDFBiomicrofluidics
July 2020
Institute of Mechatronic Systems, Leibniz Universität Hannover, 30823 Garbsen, Germany.
This work presents a droplet applicator module to generate stable droplets with different muzzle energies for the reproducible endoscopic stimulation of the laryngeal adductor reflex (LAR). The LAR is a protective reflex of the human larynx; an abnormal LAR performance may cause aspiration pneumonia. A pathological LAR can be detected by evaluating its onset latency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!