Locomotive disorders constitute a serious problem in horse racing which will only be rectified by a better understanding of the causative factors associated with disturbances of gait. This study describes a system for the quantitative analysis of the locomotion of horses at speed. The method is based on high-speed cinematography with a semi-automatic system of analysis of the films. The recordings are made with a 16 mm high-speed camera run at 500 frames per second (fps) and the films are analysed by special film-reading equipment and a mini-computer. The time and linear gait variables are presented in tabular form and the angles and trajectories of the joints and body segments are presented graphically.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.2042-3306.1980.tb02309.xDOI Listing

Publication Analysis

Top Keywords

high-speed cinematography
8
quantitative analysis
8
application high-speed
4
cinematography quantitative
4
analysis equine
4
equine locomotion
4
locomotion locomotive
4
locomotive disorders
4
disorders constitute
4
constitute serious
4

Similar Publications

Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells.

View Article and Find Full Text PDF

A four-dimensional (4D) mid-infrared laser absorption imaging technique has been developed and demonstrated for quantitative, time-resolved, volumetric measurements of temperature and species concentration in dynamic combustion flows. This technique employs a dual high-speed infrared camera setup to capture turnable radiation from a quantum cascade laser near 4.85 µm to resolve rovibrational absorption transitions of carbon monoxide at two orthogonal projection angles.

View Article and Find Full Text PDF

We present a 2D-stitched, 316MP, 120FPS, high dynamic range CMOS image sensor with 92 CML output ports operating at a cumulative date rate of 515 Gbit/s. The total die size is 9.92 cm × 8.

View Article and Find Full Text PDF

Laser-induced cavitation bubbles and shock waves in water near a concave surface.

Ultrason Sonochem

May 2021

Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia. Electronic address:

The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs.

View Article and Find Full Text PDF

This work presents a droplet applicator module to generate stable droplets with different muzzle energies for the reproducible endoscopic stimulation of the laryngeal adductor reflex (LAR). The LAR is a protective reflex of the human larynx; an abnormal LAR performance may cause aspiration pneumonia. A pathological LAR can be detected by evaluating its onset latency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!