The in vitro test of direct granulation of basophils affected by specific antigens (cardial tissue, acid-soluble fraction of collagen, streptococcal allergens) was investigated in the course of treating 41 patients (29 women and 12 men aged from 20 to 50 years) suffering from a little active rheumatic fever. The patients received a complex of therapeutic measures including high-protein diet (130-140 g protein) and drugs (1.5-2.0 g acetylsalicylic acid and 15 mg of prednisolone a day). As a result of the treatment all the patients improved and demonstrated pain relief in the heart region, reduced palpitation, abatement of general weakness and fatigue. At the same time there was a decrease in the reactivity of basophilic leukocytes, shown by less number of degranulated cells in vitro, activated with specific antigens.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high-protein diet
8
specific antigens
8
[parameters polynuclear
4
polynuclear cell
4
cell activity
4
activity torpid
4
torpid latent
4
latent recurrent
4
recurrent rheumocarditis
4
rheumocarditis process
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Oligomerix, Inc., Bronx, NY, USA.

Background: OLX-07010 is an oral small molecule inhibitor of tau self-association that prevented the accumulation of tau aggregates in the htau mouse model expressing wild type human CNS tau isoforms and in P301L tau JNPL3 mice using chronic treatment by administration in diet (Davidowitz et al., 2020, PMID: 31771053; 2023 PMID:37556474). A therapeutic study of JNPL3 mice with chronic treatment from 7-12 months of age inhibited the progression of tau aggregation and improved motor coordination.

View Article and Find Full Text PDF

Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.

View Article and Find Full Text PDF

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice.

Int J Biol Sci

January 2025

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!