CT images of the heart are significantly degraded by the effects of motion during the scanning interval. The use of electrocardiographic (ECG) gating to provide "stop-action" cardiac images remains limited by artifacts. A motion phantom has been constructed to allow systematic study of the artifact structure of ECG-gated images and to isolate the origins of these artifacts. "Stop-action" reconstructed images are presented demonstrating two classes of artifacts: (a) pinwheel artifacts that appear at the edges of high-contrast moving objects; and (b) linear streaks occurring in relation to missing views when an incomplete angular set of projections is used for image reconstruction with the convolution back-projection algorithm. These results underscore the use of the motion phantom for the analysis of image artifacts and stress the need for new CT reconstruction algorithms which are optmized for "stop-action" scanning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiology.134.1.7350608 | DOI Listing |
Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, Stanford University, Stanford, California, USA.
Purpose: To provide a fast quantitative imaging approach for a 0.55T scanner, where signal-to-noise ratio is limited by the field strength and k-space sampling speed is limited by a lower specification gradient system.
Methods: We adapted the three-dimensional spiral projection imaging MR fingerprinting approach to 0.
Purpose: To develop a rapid, high-resolution and distortion-free quantitative $R_{2}^{*}$ mapping technique for fetal brain at 3 T.
Methods: A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, $R_{2}^{*}$ and $B_{0}$ field maps directly from the acquired k-space data.
Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.
View Article and Find Full Text PDFMed Dosim
January 2025
Department of Central Radiology, Nihon University Itabashi Hospital, Tokyo, Japan.
This study was conducted to evaluate the use of 4-dimensional (4D) maximum intensity projection (4D-MIP) to compensate for the disadvantages of average intensity projection (AIP), which is used to determine the internal target volume (ITV) in lung tumors. A respiratory motion phantom with a simulated tumor was imaged using 4D computed tomography (4D-CT). AIP and 4D-MIP were generated based on 10 phases of 4D-CT, followed by contouring of the ITV and ITV; these were compared with the ITV contoured in 10 phases of 4D-CT (ITV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!