Download full-text PDF

Source
http://dx.doi.org/10.1300/J021v01n04_05DOI Listing

Publication Analysis

Top Keywords

aging implications
4
implications training
4
training point
4
point view
4
view aged
4
aging
1
training
1
point
1
view
1
aged
1

Similar Publications

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Personalized Nutrition (PN) aims to provide tailored dietary recommendations to improve a person's health outcomes by integrating a multitude of individual-level information and support desired behavior changes. The field is rapidly evolving with technological advances. As new biomarkers are discovered, wearables and other devices can now provide up-to-the-minute insights, and artificial intelligence (AI) and machine learning (ML) models support recommendations and lifestyle behavior change.

View Article and Find Full Text PDF

Lactylation: The Metabolic Accomplice Shaping Cancer's Response to Radiotherapy and Immunotherapy.

Ageing Res Rev

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.

View Article and Find Full Text PDF

Cellular Senescence in Tumor Immune Escape: Mechanisms, Implications, and Therapeutic Potential.

Crit Rev Oncol Hematol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation.

View Article and Find Full Text PDF

A-kinase anchoring protein 79/150 (AKAP79/150) is a crucial scaffolding protein that positions various proteins at specific synaptic sites to modulate excitatory synaptic intensity. As our understanding of AKAP79/150's biology deepens, along with its significant role in the pathophysiology of various human disorders, there is growing evidence that reveals new opportunities for therapeutic interventions. In this review, we examine the fundamental structure and primary functions of AKAP79/150, emphasizing its pathophysiological mechanisms in different nervous system disorders, particularly inflammatory pain, epilepsy, depression, and Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!