Styrene is commonly used in western Europe for the manufacture of plastics suitable for packaging foodstuffs. This report demonstrates that, injected intraperitoneally at a dose as low as 10 mg/kg, styrene modifies the catalytic properties of aryl hydrocarbon hydroxylase by reducing its KM value. A similar effect is reported for two potent chemical carcinogens, 3-methylcholanthrene and benzo(a)pyrene. Ethylbenzene and benzo(e)pyrene and phenobarbital do not produce the same effect. Pretreatments of the rats with chemicals which modify aryl hydrocarbon hydroxylase also increase the capacity of the liver enzymes to activate benzopyrene to a mutagenic intermediate in vitro, as measured by the Ames test for mutagenicity. Exposure to both styrene and the other modifiers of the xenobiotic-metabolizing enzymes could thus influence the carcinogenic and toxic effects of chemicals which are activated by these enzymes. This hypothesis needs further investigation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aryl hydrocarbon
8
hydrocarbon hydroxylase
8
acute biotoxic
4
styrene
4
biotoxic styrene
4
styrene rat
4
rat liver
4
liver correlation
4
correlation enzyme-mediated
4
enzyme-mediated mutagenicity
4

Similar Publications

Previous studies showed that the female genital tract microbiome plays a crucial role in regulating the host's immune defense mechanisms. Our previous research has shown that Lactobacillus gasseri LGV03 (L. gasseri LGV03) isolated from cervico-vagina of HPV-cleared women contributes to clearance of HPV infection and beneficially regulate immune response.

View Article and Find Full Text PDF

Cloning and functional characterization of sesquiterpene synthase genes from Inonotus obliquus using a Saccharomyces cerevisiae expression system.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.

Inonotus obliquus (Chaga mushroom) is a large medicinal and edible fungus that contains a wealth of bioactive terpenoids. However, the detection of certain low-abundance sesquiterpenoids remains a challenge due to limitations in extraction and analytical techniques. Furthermore, the synthase genes responsible for the biosynthesis of the identified terpenoids have not yet been clearly elucidated.

View Article and Find Full Text PDF

2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remine unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration.

View Article and Find Full Text PDF

Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).

View Article and Find Full Text PDF

Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!