The Authors suggest a new method, elaborated by their own, for long-term antiarrhythmic stimulation. They used ambulatory electrocardiography in order to evaluate the results. It consists of a radio frequency device for synchronization and stimulation, and allows the scanning stimulation of all the cycle of tachycardia, with automatic search for the zone of interruption. The stimulatory is carried by the patient, who must set it in motion at the onset of the tachycardia. Preliminary results show the efficacy of the method; Holter monitoring seems to be the best guide to the development of a satisfactory implantable automatic tachycardia-terminating pacemaker.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Organic photodetectors (OPDs) are key devices for monitoring vital signs, such as heart rate and blood oxygen level. For realizing the long-term measurement of biosignals, stable operation is essential. To improve the stability of OPDs, it is important to analyze each layer to understand the degradation mechanism.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Heilongjiang Transportation Information and Science Research Center, Harbin 150080, China.
The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Engineering, Mathematics and Science Education, Mid Sweden University, SE-851 70 Sundsvall, Sweden.
A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is low compared to other technologies. To improve this situation, the underlying battery design must be changed and the material choices need to be made with a sustainable mindset. A suitable and effective approach is to utilize bio-materials, such as paper and electrode composites made from graphite and cellulose, and adopt already existing recycling methods connected to the paper industry.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.
Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!