Recovery of AChE activity in the motor end plate region and end plate free region of the rat diaphragm was studied after irreversible inhibition by soman. Recovery was slow during the first 2 days and only 4 S and 10 S molecular forms of AChE were present in the end plate region. However, cytochemical evidence indicates that synaptic AChE has already started to accumulate and that the synthesis of AChE in muscle and Schwann cell might even be enhanced. Tubular structures, observed underneath the motor end plate, may serve to transport the enzyme from its sites of synthesis in the sarcoplasmic reticulum. Asymmetric molecular forms of AChE in he end plate region appeared later during recovery and, one week after poisoning, their activity was only about 50% of normal value. The limited ability of newly synthesized AChE to attach to the subcellular structures and, therefore, be retained in the muscle, may explain the phase of slow recovery. In accordance with this view, AChE activity in brain recovered in a similar way as in muscle, whereas soluble plasma cholinesterases recovered faster, apparently without a slow initial phase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1981.tb04478.xDOI Listing

Publication Analysis

Top Keywords

molecular forms
12
motor plate
12
plate region
12
irreversible inhibition
8
inhibition soman
8
ache activity
8
forms ache
8
ache plate
8
ache
7
plate
6

Similar Publications

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Background: Takayasu arteritis (TAK) and giant cell arteritis (GCA), the most common forms of large-vessel vasculitis (LVV), can result in serious morbidity. Understanding the molecular basis of LVV should aid in developing better biomarkers and treatments.

Methods: Plasma proteomic profiling of 184 proteins was performed in two cohorts.

View Article and Find Full Text PDF

Identification and Characterization of a Protease Producing Strain From Tannery Waste for Efficient Dehairing of Goat Skin.

Biomed Res Int

January 2025

Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!