To elucidate the mechanisms through which 2-mercaptoacetate administration inhibits fatty acid oxidation in the liver, the respiration rates induced by different substrates were studied polarographically in rat hepatic mitochondria isolated 3 h after 2-mercaptoacetate administration. Palmitoyl-L-carnitine oxidation was almost completely inhibited in either the absence or presence of malonate. Octanoate oxidation was also inhibited, and the intramitochondrial acyl-CoA content was markedly increased. The oxidation rate of pyruvate and 2-oxoglutarate on the one hand and of 3-hydroxybutyrate, succinate and glutamate on the other was either normal or only slightly decreased. In the presence of 2,4-dinitrophenol, the extent of the inhibition of palmitoyl-L-carnitine oxidation was unchanged. All these results are consistent with the hypothesis that the 2-mercaptoacetate inhibition of fatty acid oxidation is due to an inhibition of the beta-oxidation pathway itself. Finally, the mitochondrial defect responsible for this inhibition was shown to be an inhibition of palmitoyl-CoA dehydrogenase activity (EC 1.3.99.3).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1163101PMC
http://dx.doi.org/10.1042/bj1960803DOI Listing

Publication Analysis

Top Keywords

2-mercaptoacetate administration
12
beta-oxidation pathway
8
dehydrogenase activity
8
fatty acid
8
acid oxidation
8
palmitoyl-l-carnitine oxidation
8
inhibition
6
oxidation
6
2-mercaptoacetate
4
administration depresses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!