Bone remodeling due to stress-shielding has been studied using a model system consisting of metal-polymer laminated fixation plates securely fixed to canine femurs. The plate stiffness was controlled by varying the ratio of metal facing to polymer core thickness in the laminate design while secure fixation to bone was achieved by providing a porous bone interfacing surface for the ingrowth of bone from the periosteal surface. Observations of laterally and medially placed plates indicated resorption in the area of the periosteal and endosteal bone surfaces respectively, for the higher stiffness composite plates used. The results indicate that plate stiffness greater than approximately 70 GPa (axial) and 6 N m2 (flexural) will result in extensive bone remodeling in the canine femur after a six month implantation period.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.820150610DOI Listing

Publication Analysis

Top Keywords

bone remodeling
12
plate stiffness
8
bone
6
study bone
4
remodeling metal-polymer
4
metal-polymer laminates
4
laminates bone
4
remodeling stress-shielding
4
stress-shielding studied
4
studied model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!