Download full-text PDF |
Source |
---|
PLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan. Electronic address:
Modulation in cellular function and cell death through electrostimulation of intracellular organelles with the application of 50 ns pulsed electric field (nsPEF) have been investigated in breast cancerous MCF7 and normal MCF10A cells by developing a three-dimensional microelectrode device integrated with a fluorescence microscope. The findings revealed that nsPEF induced distinct effects on intracellular functions and dynamics in MCF7 and MCF10A cells. MCF10A cells exhibited significantly higher survivability than MCF7 cells, with different modes of cell death observed between them.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:
Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Diabetes and Obesity Department, Tongde Hospital of Zhejiang Province, Hangzhou, China; Integrated Chinese and Western Medicine Department, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China. Electronic address:
Myocardial infarction is a leading cause of morbidity and mortality associated with cardiovascular diseases worldwide. Although novel medications and treatments greatly alleviate patient suffering, challenges related to prognostic limit the recovery of cardiac function. Currently, treatment with monomeric compounds displays promise in prognostic interventions for cardiac diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!