Theoretical and experimental techniques have been used to study optimal x-ray for screen-film mammography. A simple model of mammographic imaging predicts optimum x-ray energies which are significantly higher than the K-characteristic energies of Mo. A subjective comparison of x-ray spectra from Mo-anode and W-anode tubes indicates that spectra produced by a W-anode tube filtered with materials of atomic number just above that of Mo are more suitable for screen-film mammography than spectra produced by the Mo-anode/Mo-filter system. The imaging performance of K-edge filtered, W-anode tube spectra was compared to the performance of Mo-anode spectra using phantom measurements and mastectomy specimen radiography. It was shown that optimal W-anode spectra can produce equal contrast with an exposure reduction of a factor of two to three, a dose reduction of a factor of two, and equal or reducing tube loading, compared to Mo-anode spectra. A computer simulation was carried out to extend the initial, monoenergetic theory to the case of real, polychromatic sources. The effects of varying filter material and thickness, tube operating potential, and breast thickness were all studied. Since W-anode x-ray tubes are considered to be better for Xerox mammography than Mo-anode tubes, this study has shown that both Xerox and screen-film techniques can be performed optimally with a single, properly designed, W-anode x-ray tube.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.595021DOI Listing

Publication Analysis

Top Keywords

screen-film mammography
12
optimal x-ray
8
spectra
8
x-ray spectra
8
spectra produced
8
w-anode tube
8
mo-anode spectra
8
reduction factor
8
w-anode x-ray
8
w-anode
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!