Twenty-four patients with differentiated thyroid cancer were studied with diagnostic I-131 neck chest scans after having undergone bilateral subtotal thyroidectomy and initial I-131 therapy with either 30- or 100-mCi doses. With an endogenous stimulation protocol, follow-up studies were performed with neck and chest scans using 2 and 10 mCi I-131. A 400% increase in sensitivity was found with a 10-mCi dose relative to a 2-mCi dose. Comparison with therapeutic doses of 30 and 100 mCi resulted in further increases in the detection of residual iodine-avid tissue. We conclude that a 2-mCi or lower dose of I-131 is inadequate in evaluating residual iodine-avid tissue visually in patients with thyroid cancer. The study does not answer the critical question of whether it is necessary to treat a patient presenting a negative 2-mCi but a positive 10-mCi scan. It may be appropriate to define ablation visually as well as clinically, with further studies directed toward determining a treatment rationale in this patient population.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thyroid cancer
12
patients thyroid
8
neck chest
8
chest scans
8
residual iodine-avid
8
iodine-avid tissue
8
significance 1-131
4
1-131 scan
4
dose
4
scan dose
4

Similar Publications

Programmed cell death-related gene IL20RA facilitates tumor progression and remodels tumor microenvironment in thyroid cancer.

Sci Rep

January 2025

Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.

Programmed cell death (PCD) is a vital biological process that is essential for regulating cell progression and tumor microenvironment. This study aimed to explore the relationship between PCD-related genes expression and prognosis in thyroid cancer (THCA), especially IL20RA, as a potential prognostic marker for THCA. Data from The Cancer Genome Atlas (TCGA) database was utilized to develop a PCD-related risk prediction model based on LASSO regression along with univariate Cox regression.

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

The potential of lazertinib and amivantamab combination therapy as a treatment strategy for uncommon EGFR-mutated NSCLC.

Cell Rep Med

January 2025

Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei New ΙΙ Han Institute for Integrative Lung Cancer Research, Yonsei University of Medicine, Seoul, Republic of Korea. Electronic address:

Uncommon epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) pose therapeutic challenge due to limited response to EGFR tyrosine kinase inhibitors (TKIs). This study presents preclinical evidence and mechanistic insights into the combination of lazertinib, a third-generation EGFR-TKI; and amivantamab, an EGFR-MET bispecific antibody, for treating NSCLC with uncommon EGFR mutations. The lazertinib-amivantamab combination demonstrates significant antitumor activity in patient-derived models with uncommon EGFR mutations either before treatment or after progressing on EGFR-TKIs.

View Article and Find Full Text PDF

Development of animal models to study aggressive thyroid cancers.

Eur Thyroid J

January 2025

J Knauf, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, United States.

The development of mouse models for thyroid cancer has significantly advanced over the years, enhancing our understanding of thyroid tumorigenesis, molecular pathways, and treatment responses. The earliest mouse models of thyroid cancer relied on hormone, radiation, or chemical carcinogenesis to induce tumors. However, as our understanding of the genetic alterations driving thyroid cancer has expanded, more sophisticated genetic engineering techniques have been employed to create models with thyroid-specific expression of these driver mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!