1. Current-clamp experiments were carried out with guinea-pig papillary muscles to determine the dependence of depolarization-induced automaticity on endogenous catecholamines. 2. Catecholamine depletion was produced by pre-treatment of animals with 6-hydroxydopamine and confirmed by fluorimetric assay of right ventricular tissue. Papillary muscles from depleted animals demonstrated a marked suppression of depolarization-induced automaticity for maximum diastolic potentials less negative than -55 mV. This suppression was completely reversed by noradrenaline but not by tyramine. 3. In normal tissue, noradrenaline and tyramine had much smaller effects on automaticity arising from maximum diastolic potentials negative to -55 mV than on repetitive activity arising positive to this level. 4. L-propranolol in concentrations of 2-3 x 10(-7) M reduced repetitive activity in the less negative range of maximum diastolic potential. No evidence of direct membrane depression was observed at these doses and the effect was reversed by application of noradrenaline. 5. D-propranolol, the isomer with much lower beta-receptor blocking potency, required twentyfold higher concentrations to depress automaticity and this was accompanied by evidence of direct membrane depression, i.e. reduction of upstroke velocity of action potentials. 6. These results show that automaticity induced in guinea-pig papillary muscles by depolarization positive to -55 mV is strongly dependent upon endogenous catecholamines. 7. The hypothesis that endogenous catecholamines facilitate depolarization-induced automaticity through an increase in calcium conductance was modelled using numerical techniques. It was found that changes in calcium conductance caused changes in the model which closely parallelled the experimental effects of catecholamine depletion and beta-blockade. The effects of changes in delayed rectification in the model did not accurately reproduce the experimental results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1274584 | PMC |
http://dx.doi.org/10.1113/jphysiol.1980.sp013508 | DOI Listing |
Comput Biol Med
January 2025
LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:
In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Niculae Stancioiu Heart Institute, University of Medicine and Pharmacy "Iuliu Hatieganu", 400001 Cluj-Napoca, Romania.
Background: Papillary muscles are structures integrated into the mitral valve apparatus, having both electrical and mechanical roles. The importance of the papillary muscles (PM) is mainly related to cardiac arrhythmias and mitral regurgitation. The aim of this review is to offer an overview of the anatomy and physiology of the papillary muscles, along with their involvement in cardiovascular pathologies, including arrhythmia development in various conditions and their contribution to secondary mitral regurgitation.
View Article and Find Full Text PDFHeart Lung Circ
January 2025
Department of Cardiovascular Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan. Electronic address:
Vet Res Forum
November 2024
Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.
African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Cardiac Surgery, Assistance Publique-Hôpitaux de Paris, Creteil, France.
Background: Secondary mitral regurgitation (SMR) is a condition affecting the left ventricle (LV) rather than the mitral valve (MV). If the MV remains structurally unchanged, enlargement of the LV or impairment of the papillary muscles can occur. Several mechanical interventions are available to dictate the resolution of MR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!