The effects of hycanthone and praziquantel on the activities of monoamine oxidases and cholinesterases were studied in the 600-g supernatant from homogenates of Schistosoma mansoni and mouse liver or brain. Hycanthone was shown to be a very potent inhibitor of monoamine oxidases from worms and mouse liver. Hycanthone also inhibited the specific and nonspecific cholinesterases of S. mansoni, but cholinesterase from mouse brain was not affected significantly by this drug. Praziquantel showed no effect on monoamine oxidase from mouse liver or the parasite; however, it was slightly inhibitory to S. mansoni cholinesterases at very high concentrations. Mouse brain cholinesterase required an even higher concentration of praziquantel to observe inhibition. The inhibition of monoamine oxidase in S. mansoni by hycanthone adds a new mode of action to our knowledge of this compound, and suggests another possibility for the development of future anthelminthics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

monoamine oxidase
12
mouse liver
12
effects hycanthone
8
hycanthone praziquantel
8
praziquantel monoamine
8
schistosoma mansoni
8
monoamine oxidases
8
mouse brain
8
monoamine
5
mansoni
5

Similar Publications

Alzheimer's disease (AD) is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success. Faced with this challenge, we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support. We developed four deep neural network (DNN) models for AD drugs screening at the disease and target levels.

View Article and Find Full Text PDF

Nutmeg and mace are commonly known for their medicinal and culinary properties. The chemical compounds found in nutmeg and mace, notably myristicin, elemicin, and safrole, have been implicated in the psychoactive and anticholinergic effects that are the result of acute toxicity. Cases of mace toxicity are not as commonly reported as nutmeg toxicity.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases are a group of disorders characterized by progressive neuronal degeneration and death, of which Alzheimer's disease and Parkinson's disease are the most common. These diseases are closely associated with increased expression of monoamine oxidase B (MAO-B), an important enzyme that regulates neurotransmitter concentration, and its overactivity leads to oxidative stress and neurotoxicity, accelerating the progression of neurodegenerative diseases. Therefore, the development of effective MAO-B inhibitors is important for the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MAO-B) are two key targets in the treatment of AD, molecules that inhibiting both targets are considered promising avenue to develop more effective AD therapies.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!