An investigation designed to define relationships between endothelial channels and lysosomes was conducted in the mammalian brain microvasculature. Microvessels from normal and mechanically injured mouse brains were studied ultracytochemically for: (1) transport of horseradish peroxidase (HRP) protein tracer through endothelial channels, and (2) for acid phosphatase (AcP) activity as an enzymatic marker of lysosomes. Following traumatic brain injury for 1 week with 2 h circulation of intravenously injected HRP, selected brain slices were processed for ultrastructural localization of either HRP, AcP, or for both reactions together within the same tissue slices. One week after blood-brain barrier (BBB) damage, the presence of HRP reaction product (RP) was observed within endothelial channels and vesicles of capillaries and arterioles with concomitant increase in lysosomal enzymatic activity of the endothelial cells bordering regions of brain damage. Lysosomes were observed to be directly connected to the endothelial channels. Our observations present cytochemical evidence for endothelial channel-lysosome connections which may suggest intralysosomal modification of blood-born materials before entering the neuropil. Such modification could have important immunological and/or metabolic significance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00688022DOI Listing

Publication Analysis

Top Keywords

endothelial channels
16
evidence endothelial
8
endothelial channel-lysosome
8
channel-lysosome connections
8
blood-brain barrier
8
endothelial
7
brain
5
ultracytochemical evidence
4
connections mouse
4
mouse brain
4

Similar Publications

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

Erythromelalgia, a rare cutaneous pain syndrome, is characterized by acral burning pain and flushing, often alleviated by cold and rest. Primary erythromelalgia is caused by gain-of-function mutations of genes encoding for sodium channels, resulting in hyperexcitability of pain signaling neurons. Autoimmunity and hematologic dyscrasias such as thrombocythemia have been implicated in secondary erythromelalgia.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Efficient in-droplet cell culture and cytomechanics measurement for assessment of human cellular responses to alcohol.

Anal Chim Acta

February 2025

Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China. Electronic address:

Background: Excessive alcohol consumption poses a significant threat to human health, leading to cellular dehydration, degeneration, and necrosis. Alcohol-induced cellular damage is closely linked to alterations in cellular mechanical properties. However, characterizing these changes following alcohol-related injury remains challenging.

View Article and Find Full Text PDF

The flow sensing endothelial cell lining of blood and lymphatic vessels is essential in vertebrates. While the mechanisms are still mysterious in many regards, several critical components became apparent through molecular biology studies. In this article, we focus on PIEZO1, which forms unusual force-sensing ion channels capable of rapid transduction of force into biological effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!