A cold-resistant (cr) variant of mouse L fibroblasts called LC3, isolated by repeated cooling of the parent population for several weeks at 4 degrees C, differed from the wild-type cells in morphology and function. Microcinematographic records demonstrate that their motility is markedly reduced when compared with that of the L cells. They enter mitosis at 30 degrees C, at 37 degrees C and at 39 degrees C, but they finish cytodieresis only at 30 degrees C. At the higher temperatures, they reach anaphase, but then the daughter cells fuse and form polykaryons. At 39 degrees C, bizarre forms with large undulating membranes predominate in the damaged population. The cr cells may be used as a model for the study of temperature adaptations on cellular level, as well as for the analysis of the relations between membrane properties, cold resistance and cell cycle control.

Download full-text PDF

Source

Publication Analysis

Top Keywords

degrees degrees
8
degrees
6
daughter cell
4
cell fusion
4
fusion formation
4
formation polykaryons
4
polykaryons cold-resistant
4
cold-resistant cell
4
cell variant
4
variant cold-resistant
4

Similar Publications

Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.

Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.

View Article and Find Full Text PDF

The most significant progress in addressing the HIV/AIDS epidemic has been the development of antiretroviral therapy (ART). However, ensuring a high degree of treatment adherence is necessary to prevent resistance and disease progression. We conducted a cross-sectional study to evaluate adherence to ART through the calculation of the medication possession ratio (MPR) and to identify risk factors for suboptimal adherence in a cohort of HIV-positive patients receiving care at a Colombian healthcare institution across 16 cities.

View Article and Find Full Text PDF

Defect Conformal Field Theory from Sachdev-Ye-Kitaev Interactions.

Phys Rev Lett

December 2024

Tulane University, Department of Physics and Engineering Physics, New Orleans, Louisiana 70118, USA.

The coupling between defects and extended critical degrees of freedom gives rise to the intriguing theory known as defect conformal field theory (CFT). In this work, we introduce a novel family of boundary and interface CFTs by coupling N Majorana chains with SYK_{q} interactions at the defect. Our analysis reveals that the interaction with q=2 constitutes a new marginal defect.

View Article and Find Full Text PDF

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

Nematic versus Kekulé Phases in Twisted Bilayer Graphene under Hydrostatic Pressure.

Phys Rev Lett

December 2024

Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.

We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!