Download full-text PDF |
Source |
---|
Multichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211189, China.
Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Engineering (FOE), Multimedia University (MMU), Cyberjaya, Selangor, Malaysia.
Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFHeliyon
December 2024
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
In this article, the propagation of high-frequency (HF) plane electromagnetic waves through the lower ionosphere is numerically investigated using the real geometry of the Earth's magnetic field in the northern hemisphere. For this purpose, the profiles of electron density and the collision frequency in the layers of the lower ionosphere (D- and E-region) are considered using the reported experimental data for day and night. The reflection, transmission, and absorption coefficients of HF radio waves in the frequency range of 3 to 30 MHz are calculated in the ionosphere plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!